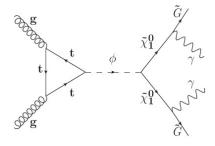
Sensitivity to New Scalar Production awith the $\gamma_{delayed}$ + MET Final State (Update)

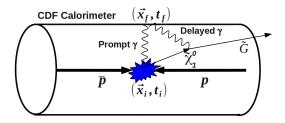
Vaikunth Thukral, Ziqing Hong, David Toback, and Randy White for the Delayed Photon Group

Department of Physics and Astronomy Texas A&M University College Station, Texas 77843 whiteran16@neo.tamu.edu


Thursday 19th March, 2015

CDF Physics Meeting

- Introduction Theory and Analysis Overview
- Signal Modelling
- Setting Limits
 - The slope of the timing distribution as a function of the model parameters
 - N⁹⁵ limits as a function of Slope
 - Acceptances
 - Cross Section Limits
- Going Farther (This part is new)
- Conclusions

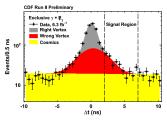

GMSB and Delayed Photons

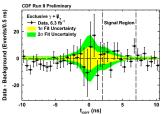
- In Gauge Mediated SUSY Breaking (GMSB) models the Lightest SUSY Particle (LSP) is the Gravitino (G̃)
- Often the next-to lightest SUSY particle is often the $\tilde{\chi}_1^0$ and can decay to γ and \tilde{G} (MET)
- The $\tilde{\chi}_1^0$ may have a lifetime on the order of a few nanoseconds. In this case, the photon's arrival time at the calorimeter would be delayed relative to expectations \rightarrow Delayed photon $(\gamma_{Delayed})$ PRD 70 114032 (2004)

• In Light Neutralino and Gravitino (LNG) models, all but the LSP and NLSP are inaccessible at colliders. However, new scalar production can produce $\tilde{\chi}_1^0$ pairs with a large production cross section. PLB 702, 377(2011)

Delayed Photons and the Timing Signature

Using a simple time of flight equation, the time associated with the initial interaction(t_i), and the time of arrival at the detector(t_f) we can construct the variable Δt to separate delayed photons from other sources.

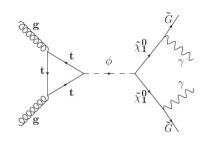

$$\Delta t = (t_{\rm f} - t_{\rm i}) - \frac{(|\vec{x}_{\rm f} - \vec{x}_{\rm i}|)}{c}$$

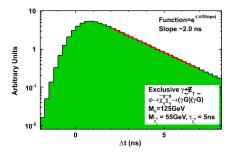

N.B.- A promply produced photon with a perfect detector has Δt =0, photons from heavy, long-lived particles have $\Delta t > 0$.

Delayed Photon Limits R. White Thursday 19th March, 2015 4/

The Exclusive $\gamma + MET$ Final State and the Signal Region

3 distinct backgrounds estimated by data-driven methods (described in detail in CDF Notes 9924, 9171, and 8636)


- Right Vertex: Resolution of the detector(0.65ns) and scaled to match the data in the region below the signal region
- Wrong Vertex: Shape has an RMS of 2.0 ns, but with a non-zero mean
- Cosmic rays: Estimated from large time regions
- Model-indepdent result published in PRD 88, 031103(R)(2013) and updated since publication, see talk by Vaikunth Thukral.
- No evidence for new physics.

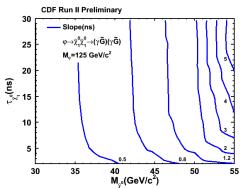

Delayed Photon Limits R. White Thursday 19th March, 2015 5/1

GMSB Signal Timing Distribution

New scalar production is well modelled using three parameters: $M_{\varphi}, M_{\tilde{\chi}^0_1}$, and $\tau_{\tilde{\chi}^0_1}$

• Studies show that the Δt distribution for the signal typically looks like an exponential in the 2-7ns region. (JHEP09 (2013)041, PRD 70(2004) 114032, and PRD 78 032015/PRL 99 121801,)

Pick a benchmark point of $M_{\varphi}=125 {\rm GeV}$, $M_{\tilde{\chi}_1^0}=55 {\rm GeV}$, and $\tau_{\tilde{\chi}_1^0}=5 {\rm ns}$. This will be ok for now but we will compare with new results at $M_{\varphi}=200 {\rm GeV}$ (explained later).

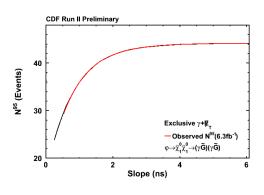

N.B.- Results today have signal simulated using Pythia and PGS with the EMTiming modelled with a custom Monte Carlo (CDF 8636, CDF 9171)

Delayed Photon Limits R. White Thursday 19th March, 2015 6/16

Timing distribution as a function of the model parameters: Slope

These next few results are from before and we will show why our new benchmarch will be a significant imporvement.

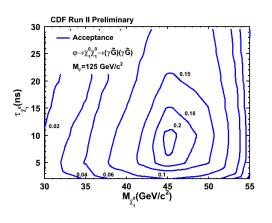
Studies show it is straight forward to estimate the slope as a function of $M_{\varphi}, M_{\tilde{\chi}_1^0}$, and $\tau_{\tilde{\chi}_1^0}$ produces a finite slope:



- ullet Contour of constant slope for $M_{arphi}=125$ GeV
- ullet Similar results for other φ masses
- ullet Slope goes up as $M_{ ilde{\chi}_1^0}$ approaches $rac{M_{arphi}}{2}$

Results: N⁹⁵ Limit verses Slope

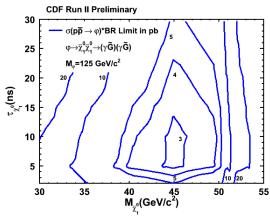
- Since each $M_{\varphi}, M_{\tilde{\chi}_1^0},$ and $\tau_{\tilde{\chi}_1^0}$ gives a known slope value, can set N^{95} vs. Slope
- Again the Cross Section Limit σ will be:


$$\sigma = \frac{N^{95}}{L * A}$$

For simplicity agian we have used 6% uncertainty on L and 20% on the acceptance (see PRD(CDF 9171)/PRL(CDF 8636)). But even with these assumptions we see that the limits have been improved drastically. More on the acceptance next.

Delayed Photon Limits R. White Thursday 19th March, 2015 8 / 1

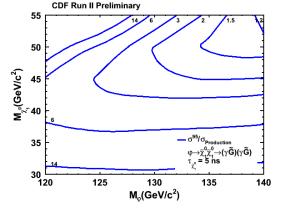
Acceptances


- To estimate the acceptance, we follow JHEP09 (2013)041 and use a customized PGS for each mass/lifetime configuration (will be fairly close... move to CDFsim in progress)
- $$\begin{split} & \bullet \text{ Highest Acceptance for roughly:} \\ & M_{\tilde{\chi}_1^0} \approx \frac{M_\varphi 24 \text{GeV}}{2} \text{ and} \\ & \tau_{\tilde{\chi}_1^0} \approx 5\text{-}10 \text{ ns} \end{split}$$
- \bullet Correlates to the best balance between having the $\tilde{\chi}^0_1$ decay within the detector
- Produces photons that are measured in the signal region (consistent with PRD 2008 (CDF 9171))

Delayed Photon Limits R. White Thursday 19th March, 2015 9/

95% Confidence Limits on Cross Section

Convert to cross section limits: Use L=6.3 $fb^{-1}\pm 6\%$, $\sigma_{Acc}=20\%$ (Acc. from previous slide), and each $M_{\varphi},M_{\tilde{\chi}_{1}^{0}}$, and $\tau_{\tilde{\chi}_{1}^{0}}$ combination gives a N^{95} which we can plug in to get σ_{95} .

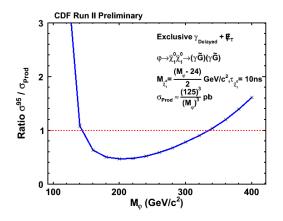

Note the limits are optimal around 5ns as in previous studies (PRD(CDF 9171)/PRL(CDF 8636)).

Delayed Photon Limits R. White Thursday 19th March, 2015 10 /

Ratio of Observed to Expected Cross Section

Compare σ^{95} to simple model of scalar production with BR=100%.

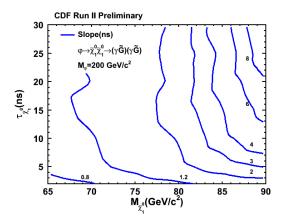
Strategy: Move to higher $\tilde{\chi}_1^0$ and φ masses to find our optimal sensitivity


Currently uses the approximation that $\sigma_{Production} = \frac{(125~{
m GeV})^3}{(M_{arphi})^3}$ pb.

Moving to using PLB 702 (2011) 377382 (thanks to Tom Junk).

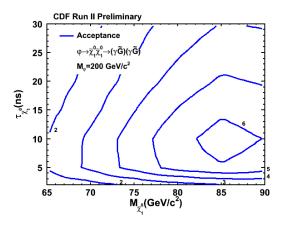
Delayed Photon Limits R. White Thursday 19th March, 2015 11/3

Possible Exclusion Region


Recall: Optimal cross section limits for $M_{\tilde{\chi}_1^0} pprox \frac{M_{\varphi} - 24 {
m GeV}}{2}$

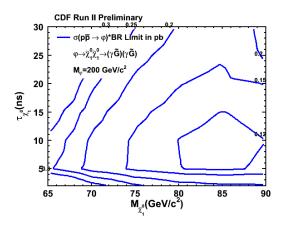
Delayed Photon Limits R. White Thursday $19^{ ext{th}}$ March, 2015 12 /

Slope at 200GeV


New Benchmark to replace plot on Slide 7

Delayed Photon Limits R. White Thursday 19th March, 2015 13/

Acceptance at 200GeV


New Benchmark to replace plot on Slide 9

Delayed Photon Limits R. White Thursday 19th March, 2015 14

Cross Section at 200GeV

New Benchmark to replace plot on Slide 10

Delayed Photon Limits R. White Thursday 19th March, 2015 15,

Conclusions

- We have preliminary expected sensitivity limits on new scalar production and decay via $\varphi \to \tilde{\chi}^0_1 \tilde{\chi}^0_1 \to \gamma_{delayed} + \textit{MET}$
- $oldsymbol{\circ}$ Results as a function of $M_{arphi}, M_{ ilde{\chi}_1^0}, ext{and } au_{ ilde{\chi}_1^0}$
- ${\color{blue} \bullet}$ Cross Section Limits appear optimal for $\tau_{\tilde{\chi}^0_1} \approx \! \! 10 \text{ns}$ and

$$M_{\tilde{\chi}_1^0} pprox rac{M_{arphi}-24}{2}$$

- The rest of the data with final acceptances and uncertainties to come using CDFsim (Nearing completion)
- Plan: Finalize results, hope to publish a PRL on these results as well as a full PRD on the analysis methods.

Delayed Photon Limits R. White Thursday 19th March, 2015 16/