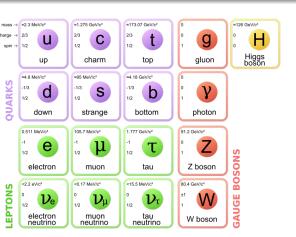
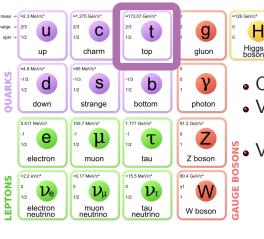
# Measurement of the Forward-Backward Asymmetry of $t\bar{t}$ at the Fermilab Tevatron

Ziqing Hong


FERMI NATIONAL LABORATORY SEMINAR Sep. 9, 2014



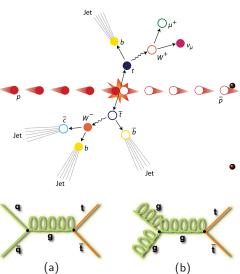

#### Table of contents

- Introduction
  - The Standard Model and the Top Quark
  - $A_{EB}^{t\bar{t}}$ : Smoking gun for new physics?
  - Searching for more evidence
- Tevatron and CDF
- $\mathbf{3} \ t \overline{t} o \mathsf{dilepton}$
- $oldsymbol{\Phi} A_{\mathsf{FB}}^\ell$  measurement methodology
- **5**  $A_{\mathsf{FB}}^{\ell}$  in dilepton and combination at CDF
- Prospects for a final Tevatron combination
- Conclusions

## The Standard Model - Top Quark



## The Standard Model - Top Quark

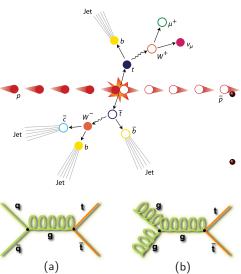



Top Quark

- Observed at Tevatron (1995)
- Very heavy
  - $m_t \simeq 173 \; \mathrm{GeV/c^2}$
- 🖁 Very short lived
  - No time to form hadrons
  - Unique opportunity to study a "bare" quark

Mysterious particle
Properties need to be further understood

### Top-Quark Pair at Tevatron




Top-quark pair production at the Fermilab **Tevatron** 

### pp̄ collision at Tevatron

- CP even initial state
- Different from pp collision and CP odd initial state at LHC
- Unique production mechanism
  - 85% quark annihilation (a)15% gluon fusion (b)
  - LHC is gluon fusion dominated (> 90%)

### Top-Quark Pair at Tevatron

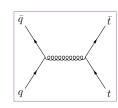


Top-quark pair production at the Fermilab **Tevatron** 

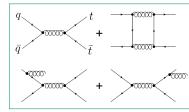
 $\sim 70,000 \ t\bar{t}$  produced

- Study events to learn how particles interact
- Tevatron experiment sensitive to certain top-quark
   production mechanisms and properties

# $A_{\rm FB}^{t\bar{t}}$ at Tevatron


- $\bullet$  Cross-section, mass and width measured & agree with SM What else can we learn about  $t\bar{t}$  produced at Tevatron?
- Angular distribution
- $y = \frac{1}{2} \ln \frac{E + p_z}{F p_z}$
- ullet Simplest observable: forward-backward asymmetry ( $A_{\rm FB}$ )
- (q̄, g) Does top quark prefer proton direction or the opposite?
  - Can measure rapidity difference between top and anti-top
  - Define  $A_{FB}$  of  $t\bar{t}$  production:

$$A_{\mathsf{FB}}^{tar{t}} = rac{ extstyle N(\Delta y > 0) - extstyle N(\Delta y < 0)}{ extstyle N(\Delta y > 0) + extstyle N(\Delta y < 0)}$$


# $A_{\rm FB}^{t\bar{t}}$ at Tevatron

### What does the SM predict?

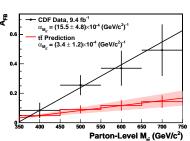
- No net preference in leading order diagram
- At next-to-leading order (NLO): top quark slightly prefers proton direction (forward)



- →Interference among diagrams
- $\bullet$  We compare to  $A_{\sf FB}^{tar{t}}({\sf NLO})=0.088\pm0.006$  (PRD 86,034026 (2012))
  - ullet Conventional renormalization scale  $(\mu_R \sim m_t)$  w/ EWK corrections.
- However, different SM calculation gives different answers and uncertainties (0.050-0.125)
- SM calculation still progressing



## $A_{FB}^{t\bar{t}}$ at Tevatron


Previous experimental results?

CDF: 
$$A_{FB}^{t\bar{t}} = 0.164 \pm 0.047$$
 (PRD **87**, 092002 (2013))

D0: 
$$A_{FB}^{t\bar{t}} = 0.106 \pm 0.030$$
 (arXiv:1405.0421)

 Measured result from CDF in tension with conventional SM calculation, with result from D0 in between

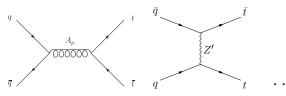
• Perhaps more important:  $A_{\rm FB}^{t\bar{t}}$  vs.  $m_{t\bar{t}}$  deviates from SM prediction



# $A_{\rm FB}^{t\bar{t}}$ at Tevatron

- ullet Anomalously large  $A_{\mathsf{FR}}^{tar{t}}$  at Tevatron
- Calling for more accurate SM calculation?

Or


• Smoking gun for new physics?

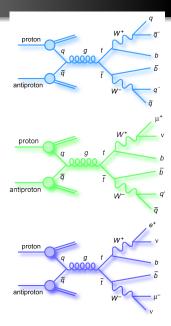
# $A_{\text{FB}}^{t\bar{t}}$ at Tevatron

### Possible alternative hypotheses?

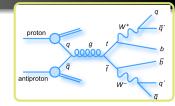
Models beyond the SM can predict large  $A_{\text{FR}}^{t\bar{t}}$ 

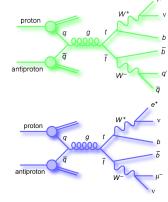
- Axigluons
- Flavor-changing Z' boson
- Beyond-SM W' boson
- Beyond-SM Higgs boson
- Extra dimensions
- .....



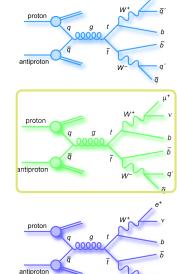

## $A_{FB}^{t\bar{t}}$ at Tevatron

# How to look for more evidence for/against new physics?


Pursue in two directions

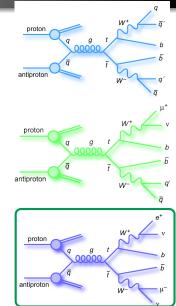

- Measure  $A_{\mathsf{FB}}^{t\bar{t}}$  with more  $t\bar{t}$  events in other final states
- Measure other related observables

- How does top quark decay?
- $t \rightarrow Wb$  almost 100% of time
- Three types of final states based on W decay mode:



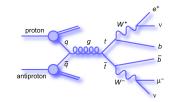

- How does top quark decay?
- ullet t o Wb almost 100% of time
- Three types of final states based on W decay mode:
  - All hadronic←Difficult channel
    - Large branching fraction
    - Hard to determine jet energy/charge
    - Hard to reconstruct  $t\bar{t}$






- How does top quark decay?
- $t \rightarrow Wb$  almost 100% of time
- Three types of final states based on W decay mode:
  - All hadronic←Difficult channel
    - Large branching fraction
    - Hard to determine jet energy/charge
    - Hard to reconstruct  $t\bar{t}$
  - Lepton+jets←Previous result
    - Decent branching fraction
    - Lepton provides additional handle




## • How does top quark decay?

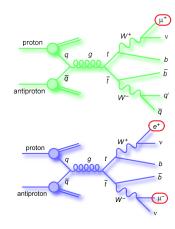
- $t \rightarrow Wb$  almost 100% of time
- Three types of final states based on W decay mode:
  - All hadronic←Difficult channel
    - Large branching fraction
    - Hard to determine jet energy/charge
    - Hard to reconstruct  $t\bar{t}$
  - Lepton+jets←Previous result
    - Decent branching fraction
    - Lepton provides additional handle
  - Dilepton ←Focus of this talk
    - Small branching fraction
    - Leptons precisely measured
    - Two  $\nu$ 's, hard to reconstruct  $t\bar{t}$



### Additional $t\bar{t}$ events in dilepton

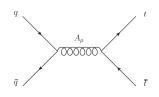
- Previous measurement based on lepton+jets final state
- Can measure  $A_{\text{FR}}^{t\bar{t}}$  in dilepton




- Independent dataset with extended detector coverage, different background constitution and estimation methods
- Need to reconstruct 4-momentum of  $t\bar{t}$   $\rightarrow$  Tough job in dilepton
- More on this later

#### Other observables?

- Two equally important observables with leptons
- Leptonic A<sub>FB</sub>


$$ullet$$
  $A_{\mathsf{FB}}^\ell = rac{N(q_\ell \eta_\ell > 0) - N(q_\ell \eta_\ell < 0)}{N(q_\ell \eta_\ell > 0) + N(q_\ell \eta_\ell < 0)}$ 

- Also lepton pair  $A_{\rm FB}$  defined with lepton  $\eta$  difference, only in dilepton
- Why consider  $A_{ER}^{\ell}$ ?
  - Lepton angles precisely measured
  - Tend to follow direction of parent tops



## $A_{\mathsf{FR}}^{\ell}$ at Tevatron

- NLO SM prediction:  $A_{ER}^{\ell} = 0.038 \pm 0.003$ 
  - Conventional renormalization scale  $(\mu_R \sim m_t)$  w/ EWK corrections.
- Prediction with new physics?
- Based on CDF  $A_{\rm FB}^{t\bar{t}}$  result  $(0.16 \pm 0.05)$ , assuming everything else SM-like:  $0.070 < A_{\tt FR}^{\ell} < 0.076$
- In new physics models,  $A_{\sf FR}^{tt}$  and  $A_{\sf FR}^\ell$ are not correlated.
- Independent measurements of  $A_{\text{FR}}^{tt}$  and  $A_{\text{FR}}^{\ell}$  are crucial



#### Example:

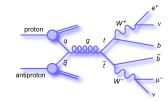
Axigluon model

$$(m = 200 \text{ GeV/c}^2, \Gamma = 50 \text{ GeV})$$

$$\rightarrow A_{\rm FB}^{t\bar{t}} = 0.12$$

$$-0.06 < A_{\rm FB}^{\ell} < 0.15$$
 depending on handedness of couplings

(PRD 87,034039 (2013))


Lepton pair A<sub>FB</sub>

$$\bullet \hspace{0.2cm} |\hspace{0.2cm} A_{\mathsf{FB}}^{\ell\ell} = \frac{\textit{N}(\Delta \eta > 0) - \textit{N}(\Delta \eta < 0)}{\textit{N}(\Delta \eta > 0) + \textit{N}(\Delta \eta < 0)}$$

- NLO SM prediction:  $A_{\rm FR}^{\ell\ell} = 0.048 \pm 0.004$
- Larger expectations

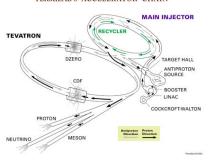


 Provide extra information to help constraining new physics models



## $A_{\mathsf{FB}}^{\ell}$ at Tevatron

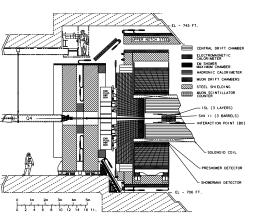
ullet Measurement of  $A_{\mathsf{FB}}^\ell$  in lepton+jets at CDF


$$A_{\mathsf{FB}}^{\ell} = 0.094^{+0.028}_{-0.026}, \, \mathsf{PRD} \,\, \textbf{88}, \, 072003 \,\, (2013)$$

- ullet 1.9 $\sigma$  larger than NLO SM calculation of 0.038  $\pm$  0.003
- Large  $A_{\mathsf{FB}}^{t\bar{t}}$  holds in  $A_{\mathsf{FB}}^{\ell}$  in the same dataset
- New results presented today:
  - Confirm or deny this anomaly large asymmetry ( $A_{\rm FB}^{tt}$  and  $A_{\rm FB}^{\ell}$ ) with the dilepton final state
  - Measure  $A_{\text{FR}}^{\ell\ell}$
  - What is the best-word-understanding of the  $A_{FB}$  results?

#### Tevatron and CDF

#### Tevatron


#### FERMILAB'S ACCELERATOR CHAIN

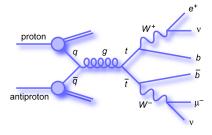


- $p\bar{p}$  collider
- Center-of-mass energy
   1.96 TeV
- Run II delivered 12fb<sup>-1</sup>
- ullet Acquired  $\sim 10 {
  m fb}^{-1}$  by CDF

#### Tevatron and CDF

#### **CDF**

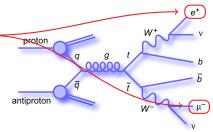



- General purpose detector
  - Solenoid (1.4 T magnetic field)
  - Tracking system
  - Calorimeter system
  - Muon detectors
- Coverage in  $t\bar{t}$  dilepton
  - Electron:  $|\eta| < 2.0$
  - Muon :  $|\eta| < 1.1$
  - Jets :  $|\eta| < 2.5$

$$tar{t} 
ightarrow ext{dilepton}$$

- A<sub>FB</sub> measurement in lepton+jets: done
- ullet Go after the next important final state: tar t o dilepton

# $t\bar{t} \rightarrow \text{dilepton}$ Event selection

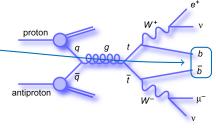

• Need a sample enriched by  $t\bar{t}$  events with dilepton signature:



# $t\bar{t} \rightarrow \text{dilepton}$ Event selection

• Need a sample enriched by  $t\bar{t}$  events with dilepton signature:

• Two opposite charged leptons



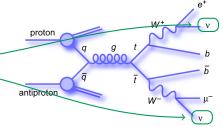

# $t\bar{t} \rightarrow \text{dilepton}$ Event selection

• Need a sample enriched by  $t\bar{t}$  events with dilepton signature:

• Two opposite charged leptons

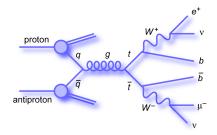
At least two jets




# $t \bar{t} o ext{dilepton}$ Event selection

• Need a sample enriched by  $t\bar{t}$  events with dilepton signature:

• Two opposite charged leptons


• At least two jets

•  $E_T > 25 \text{ GeV}$ 



# $tar{t} ightarrow ext{dilepton}$ Event selection

- Need a sample enriched by  $t\bar{t}$  events with dilepton signature:
  - Two opposite charged leptons
  - At least two jets
  - $E_T > 25 \text{ GeV}$
- Use slightly improved  $t\bar{t} \rightarrow$  dilepton data selection criteria (details in the backups)



## $tar{t} ightarrow \mathsf{dilepton}$

## Signal and background modeling

### Signal modeling:

| <ul> <li>Prediction with POWHEG MC</li> </ul> |   |
|-----------------------------------------------|---|
| (NLO SM w/ only QCD correction                | ) |

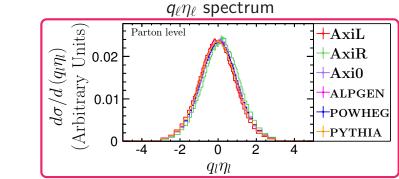
| _ | Background | modal   | in a  |
|---|------------|---------|-------|
| • | Dackground | IIIOUCI | IIIK. |

- Diboson production (WW, WZ, ZZ,  $W\gamma$ ) MC prediction
- $Z/\gamma^*+{
  m jets}$  MC prediction with correction from data
- W+jets Data-based

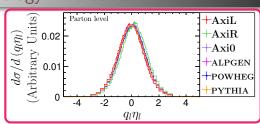
| • $t\bar{t}$ non-dilepton |    |  |  |  |  |
|---------------------------|----|--|--|--|--|
| Prediction with POWHEG    | MC |  |  |  |  |

| Source                        | Events           |
|-------------------------------|------------------|
| Diboson                       | 31.4±5.9         |
| $Z/\gamma^*+{\sf jets}$       | $50.5 {\pm} 6.2$ |
| W+jets fakes                  | $64\pm17$        |
| $tar{t}$ non-dilepton         | $14.6 {\pm} 0.8$ |
| Total background              | 160±21           |
| $tar{t}~(\sigma=7.4~{ m pb})$ | 408±19           |
| Total SM expectation          | 568±40           |
| Observed                      | 569              |

Agreement is excellent (Maybe too good? Probably luck)

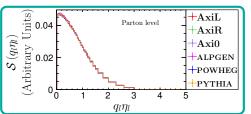

## $tar{t} ightarrow \mathsf{dilepton}$

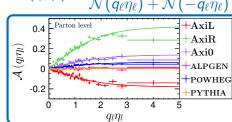
- ullet Hard to reconstruct of 4-momentum of  $tar{t}$  in dilepton
- ullet Measure  $A_{\mathsf{FB}}^\ell$  and  $A_{\mathsf{FB}}^{\ell\ell}$  first
- ullet Continue with the full  $A_{\mathsf{FB}}^{tar{t}}$  afterwards

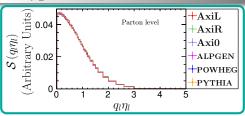

## Alternative Signal Modeling

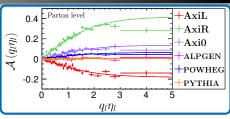
- What does the  $\eta_\ell$  spectra look like in various scenarios?
  - Test the measurement with both SM and BSM models
- Simulate  $t\bar{t}$  in various  $t\bar{t}$  production mechanisms
  - SM sample: PYTHIA/ALPGEN (LO) and POWHEG (NLO)
  - Benchmark BSM model w/ axigluon
  - Many more simulated and studied
- ullet Span large range of  $A_{\mathsf{FB}}^\ell$  and  $A_{\mathsf{FB}}^{\ell\ell}$

| Model       | $A_{FB}^{\ell}$ (Parton Level) | $A_{FB}^{\ell\ell}$ (Parton Level) | Description                   |                       |
|-------------|--------------------------------|------------------------------------|-------------------------------|-----------------------|
| AxiL        | -0.063(2)                      | -0.092(3)                          | Left-handed                   | Tree-level axigluon   |
| AxiR        | 0.151(2)                       | 0.218(3)                           | Right-handed                  | $m=200~{\rm GeV/c^2}$ |
| Axi0        | 0.050(2)                       | 0.066(3)                           | Unpolarized                   | $\Gamma=50~{\rm GeV}$ |
| ALPGEN      | 0.003(1)                       | 0.003(2)                           | Tree-level Standard Model     |                       |
| PYTHIA      | 0.000(1)                       | 0.001(1)                           | LO Standard Model             |                       |
| POWHEG      | 0.024(1)                       | 0.030(1)                           | NLO Standard Model            |                       |
| Calculation | 0.038(3)                       | 0.048(4)                           | NLO SM (PRD 86 034026 (2012)) |                       |

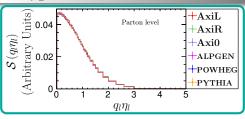


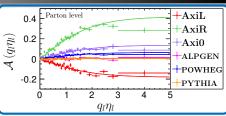


- Difference among models are small
  - Shapes almost identical, tiny shift in the mean
- Acceptance in detector limited
  - ullet No acceptance beyond  $|q_\ell \eta_\ell| = 2$
- Need a clever way to measure the subtle difference





• Decomposition of  $q_\ell \eta_\ell$  spectrum into symmetric and asymmetric components:

$$\mathcal{S}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}{2}; \mathcal{A}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) - \mathcal{N}(-q_\ell\eta_\ell)}{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}$$

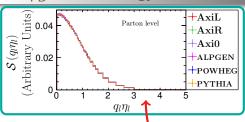







•  $\mathcal{S}(q_\ell \eta_\ell)$  consistent among models







- $\mathcal{S}(q_\ell \eta_\ell)$  consistent among models
- ullet  $\mathcal{A}(q_\ell\eta_\ell)$  very different for different models
  - ullet Sensitive to different values of  $A_{\mathsf{FB}}^\ell$

ДŘ

## $A_{\mathsf{FR}}^{\ell}$ Methodology - Introduction





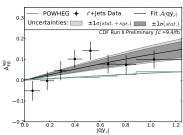
- $\mathcal{S}(q_\ell \eta_\ell)$  consistent among models
- $\mathcal{A}(q_{\ell}\eta_{\ell})$  very different for different models
  - $\bullet$  Sensitive to different values of  $A_{\rm FB}^\ell$

Not well modelled for  $q_\ell \eta_\ell > 2.5$ 

- $\mathcal{A}(q_{\ell}\eta_{\ell})$  well modeled with  $a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$  But contribution here is tiny
  - Detector only goes out to 2.0

Function empirically determined

# A<sub>FB</sub> Measurement Methodology

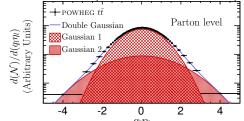

•  $A_{\sf FR}^\ell$  rewritten as

$$\mathcal{A}_{\mathsf{FB}}^\ell = rac{\int_0^\infty \mathrm{d}q_\ell \eta_\ell \mathcal{A}(q_\ell \eta_\ell) \mathcal{S}(q_\ell \eta_\ell)}{\int_0^\infty \mathrm{d}q_\ell' \eta_\ell' \mathcal{S}(q_\ell' \eta_\ell')}$$

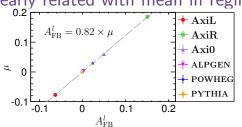
•  $A_{\rm FB}^\ell$  measurement in lepton+jets based on this decomposition and  $a \cdot \tanh(\frac{1}{2}q_\ell\eta_\ell)$  modeling

$$A_{\mathsf{FB}}^{\ell} = 0.094_{-0.029}^{+0.032}$$

•  $1.9\sigma$  larger than SM



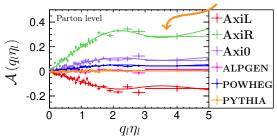

PRD 88 072003 (2013), CDF


### $A_{\mathsf{FB}}^{\ell}$ Methodology Study

Why does the  $a \cdot \tanh$  model work so well?

ullet  $q_\ell\eta_\ell$  spectrum actually well described by a double-Gaussian

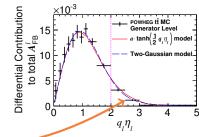



•  $A_{\rm FB}^\ell$  comes from shift in mean  $\to A_{\rm FB}^\ell$  linearly related with mean in regime of interest



PRD **90**, 014040 (2014) Z. Hong *et al*.

# $A_{\mathsf{FB}}^\ell$ Methodology Study


• Double-Gaussian does better job in modeling differential asymmetry in large  $q_\ell \eta_\ell$  region



- ullet  $\mathcal{A}(q_\ell\eta_\ell)$  still most sensitive way to measure  $\mathcal{A}_{\mathsf{FB}}^\ell$ 
  - Provides better effective measure of mean
  - Acceptance of detector mostly cancels out

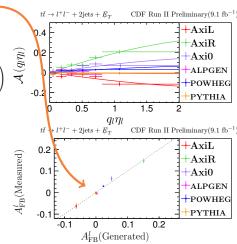
# $A_{\mathsf{FB}}^\ell$ Methodology Study

- Another way of looking at data: Differential contribution to  $A_{\mathsf{FB}}^{\ell}$
- What do we learn?
  - $_{\bullet}$  Asymmetry mostly from  $|\eta|<2.0$ 
    - Best detector coverages here
  - $a \cdot anh\left(rac{1}{2}q_\ell\eta_\ell
    ight)$  is excellent for  $|q_\ell\eta_\ell| < 2.5$
  - Mismodeling in region with small contribution



- More than good enough
- Moving forward with  $a \cdot tanh$  model with confidence

# $A_{\mathsf{FB}}^{\ell}$ Methodology - Introduction


• a · tanh model works well at parton level

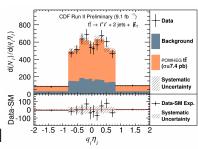


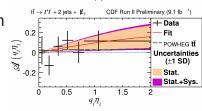
• Does detector response affect the measurement?

# $A_{\mathsf{FB}}^{\ell}$ Methodology with Detector Resp.

- ullet Detector response mostly cancels out in  $\mathcal{A}(q_\ell\eta_\ell)$
- No noticeable bias observed
- Measurement strategy:
  - Subtract off backgrounds
  - ullet Fit  $\mathcal{A}(q_\ell\eta_\ell)$  with  $a\cdot anh\left(rac{1}{2}q_\ell\eta_\ell
    ight)$
  - Obtain  $\mathcal{S}(q_\ell \eta_\ell)$  from POWHEG simulation at parton-level
  - ullet Calculate  $A_{\mathsf{FB}}^\ell$  with  $\mathcal{A}\ \&\ \mathcal{S}$
- Correct for detector response and extrapolate to inclusive  $A_{\rm FB}^{\ell}$  simultaneously




# $A_{\mathsf{FB}}^{\ell}$ in dilepton


• Measure  $A_{FB}^{\ell}$  with CDF full dataset in dilepton (9.1 fb<sup>-1</sup>)

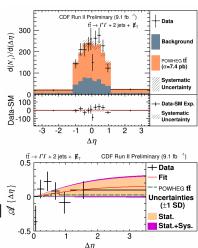
$$A_{\mathsf{FB}}^{\ell} = 0.072 \pm 0.052 (\mathsf{stat}) \pm 0.030 (\mathsf{syst}) \\ = 0.072 \pm 0.060$$

Cf. 
$$A_{EB}^{\ell}(SM,NLO) = 0.038 \pm 0.003$$

- Dominant uncertainty is statistical
- Table of systematic uncertainty in backup
- Result consistent with prediction of new physics from lepton+jets, but also consistent with SM





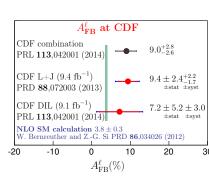

# $A_{\rm FR}^{\ell\ell}$ in dilepton

- Measurement techniques validated for  $A_{\sf FR}^{\ell\ell}$  as well.
- Measure  $A_{\sf FR}^{\ell\ell}$  with the same method

$$A_{\mathsf{FB}}^{\ell\ell} = 0.076 \pm 0.072 (\mathsf{stat}) \pm 0.039 (\mathsf{syst}) \\ = 0.076 \pm 0.081$$

Cf. 
$$A_{EB}^{\ell}(SM,NLO) = 0.048 \pm 0.004$$

- Dominant uncertainty is statistical 8
- Result consistent with SM



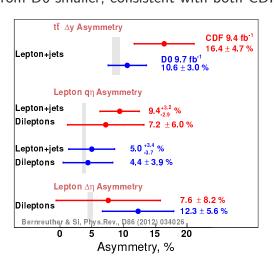

# $A_{\mathsf{FB}}^{\ell}$ combination at CDF

- ullet Combined  $A_{\mathsf{FB}}^\ell$  measurements at CDF
- Based on best linear unbiased estimator (BLUE)
- Result is  $2\sigma$  larger than NLO SM prediction:

$$A_{\mathsf{FB}}^{\ell} = 0.090^{+0.028}_{-0.026}$$

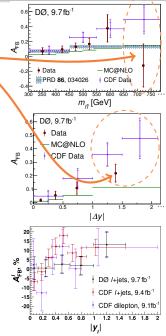
• PRL 113, 042001 (2014) (CDF)




## $A_{\rm FB}^{t\bar{t}}$ in dilepton and CDF combination

- Observed large  $A_{\rm FB}^{\ell}$  in dilepton as well, continue pursuing  $A_{\rm FB}^{t\bar{t}}$  measurement in dilepton
- Then  $A_{\mathsf{FR}}^{t\bar{t}}$  combination at CDF

Analysis in progress!


#### Prospects for a final Tevatron combination

• D0 recently released measurements of  $A_{\rm FB}^\ell$ ,  $A_{\rm FB}^{\ell\ell}$  and  $A_{\rm FB}^{t\bar{t}}$ • Results from D0 smaller, consistent with both CDF and SM



#### Prospects for a final Tevatron combination

- Total values agree within errors
- Differential distributions have inconsistencies
  - This might account for the differences
- Both experiments working to understand the differences
  - Are the two experiments measuring the same observables?
  - Different techniques causing bias in either/both experiments?
  - Statistical fluctuation?
- Plan: understand the difference and make Tevatron combinations of  $A_{\rm FB}^{\ell}$ ,  $A_{\rm FB}^{\ell\ell}$  and  $A_{\rm FB}^{t\bar{t}}$



#### Conclusions

- The A<sub>FB</sub> of top-pairs at the Tevatron continue to be tantalizing
- Measurements of  $A_{\rm FB}^{t\bar{t}}$ ,  $A_{\rm FB}^{\ell}$  and  $A_{\rm FB}^{\ell\ell}$  provide complementary handles to probe the production and decay of  $t\bar{t}$
- $A_{\mathsf{FB}}^\ell$  at CDF shows  $2\sigma$  deviation from NLO SM
- Measurement of  $A_{FB}^{t\bar{t}}$  in dilepton in progress
- Understanding the difference between CDF and D0 measurements
  - Looking forward to a final word on this important question from Tevatron as it isn't clear if it can be resolved at the LHC

#### Backup Slides

Backup slides

# $tar{t} ightarrow {\sf dilepton}$ event selection criteria

| Exactly two leptons with $E_T>20~{ m GeV}$ and passing standard identification requirements with following modifications |
|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          |

-COT radius exit > 140 cm for CMIO

 $-\chi^2/ndf <$  2.3 for muon tracks

At least one trigger lepton

At least one tight and isolated lepton

At least one tight and isolated lepton

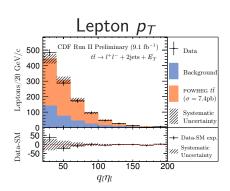
At most one lepton can be loose and/or non-isolated

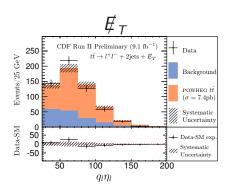
 $\not\!\!\!E_T>25~{
m GeV}$ , but  $\not\!\!\!E_T>50~{
m GeV}$  when there is any lepton or jet within  $20^\circ$  of the direction of  $\not\!\!\!E_T$ 

MetSig (=  $\frac{E_T}{\sqrt{E_z^{mm}}}$ ) > 4  $\sqrt{\rm GeV}$  for ee and  $\mu\mu$  events where 76  $\rm GeV/c^2 < m_{ll} < 106~GeV/c^2$ 

 $m_{ll} > 10 \text{ GeV/c}^2$ 

Two or more jets with  $E_{\mathrm{T}} > 15~\mathrm{GeV}$  within  $|\eta| < 2.5$ 


 $H_T > 200 \text{ GeV}$ 


Opposite sign of two leptons

Saseline Cuts

Signal

# $t ar{t} ightarrow ext{dilepton}$ Signal and background modeling Validation





#### Agreement is excellent

# Systematic uncertainty of $A_{\mathsf{FB}}^\ell$ measurement

| CDF Run II Preliminary (9.1 ${ m fb}^{-1}$ ) |       |  |  |  |
|----------------------------------------------|-------|--|--|--|
| Source of Uncertainty                        | Value |  |  |  |
| $(A_{FB}^\ell)$                              |       |  |  |  |
| Backgrounds                                  | 0.029 |  |  |  |
| Asymmetric Modeling                          | 0.006 |  |  |  |
| Jet Energy Scale                             | 0.004 |  |  |  |
| Symmetric Modeling                           | 0.001 |  |  |  |
| Total Systematic                             | 0.030 |  |  |  |
| Statistical                                  | 0.052 |  |  |  |
| Total Uncertainty                            | 0.060 |  |  |  |

# Systematic uncertainty of $A_{\mathsf{FB}}^{\ell\ell}$ measurement

| CDF Run II Preliminary (9.1 ${ m fb}^{-1}$ ) |       |  |  |  |
|----------------------------------------------|-------|--|--|--|
| Source of Uncertainty                        | Value |  |  |  |
| $(A_{\sf FB}^{\ell\ell})$                    |       |  |  |  |
| Backgrounds                                  | 0.037 |  |  |  |
| Asymmetric Modeling                          | 0.012 |  |  |  |
| Jet Energy Scale                             | 0.003 |  |  |  |
| Symmetric Modeling                           | 0.004 |  |  |  |
| Total Systematic                             | 0.039 |  |  |  |
| Statistical                                  | 0.072 |  |  |  |
| Total Uncertainty                            | 0.082 |  |  |  |
|                                              |       |  |  |  |

# Comparison of $A_{FB}^{\ell}$ among SM prediction and measurements at CDF and D0.

| Source      | $A_{FB}^\ell$             | Description                             | Reference                     |  |
|-------------|---------------------------|-----------------------------------------|-------------------------------|--|
| Calculation | 0.038±0.003               | NLO SM                                  | PRD <b>86</b> ,034026 (2012)  |  |
|             | $0.094^{+0.032}_{-0.029}$ | Lepton + jets                           | PRD <b>88</b> 072003 (2013)   |  |
| CDF         | $0.072 \pm 0.060$         | Dilepton                                | Accepted by PRL               |  |
|             | $0.090^{+0.028}_{-0.026}$ | Combination                             | arXiv:1404.3698               |  |
| D0          | $0.042^{+0.029}_{-0.030}$ | Lepton+jets, $ q_\ell \eta_\ell  < 1.5$ | arXiv:1403.1294               |  |
|             | $0.044 \pm 0.039$         | Dilepton                                | PRD <b>88</b> , 112002 (2013) |  |
|             | $0.047 \pm 0.027$         | Combination                             | arXiv:1403.1294               |  |

# $A_{\mathsf{FB}}^{\ell}$ CDF combination

CDF Run II Preliminary

| Source of uncertainty                 | $L+J (9.4fb^{-1})$ | $DIL (9.1 fb^{-1})$ | Correlation |
|---------------------------------------|--------------------|---------------------|-------------|
| Backgrounds                           | 0.015              | 0.029               | 0           |
| Recoil modeling (Asymmetric modeling) | $+0.013 \\ -0.000$ | 0.006               | 1           |
| Symmetric modeling                    | -                  | 0.001               |             |
| Color reconnection                    | 0.0067             | -                   |             |
| Parton showering                      | 0.0027             | -                   |             |
| PDF                                   | 0.0025             | -                   |             |
| JES                                   | 0.0022             | 0.004               | 1           |
| IFSR                                  | 0.0018             | -                   |             |
| Total systematic                      | $+0.022 \\ -0.017$ | 0.030               |             |
| Statistics                            | 0.024              | 0.052               | 0           |
| Total uncertainty                     | $+0.032 \\ -0.029$ | 0.060               |             |
|                                       |                    |                     |             |

$$\begin{split} M_{l^{+}\nu}^{2} &= (E_{l^{+}} + E_{\nu})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu})^{2} = M_{W}^{2} \\ M_{l^{-}\bar{\nu}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}})^{2} = M_{W}^{2} \\ M_{l^{+}\nu b}^{2} &= (E_{l^{+}} + E_{\nu} + E_{b})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu} + \vec{p}_{b})^{2} = M_{t}^{2} \\ M_{l^{-}\bar{\nu}\bar{b}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}} + E_{\bar{b}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}} + \vec{p}_{\bar{b}})^{2} = M_{t}^{2} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{x} &= (\not E_{T})_{x} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{y} &= (\not E_{T})_{y} \end{split}$$

$$\begin{split} \mathcal{L}(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_b, E_{\bar{b}}) = & P(p_{z}^{t\bar{t}}) P(p_{T}^{t\bar{t}}) P(M^{t\bar{t}}) \times \\ & \frac{1}{\sigma_{\rm jet1}} \exp\left(-\frac{1}{2} \left(\frac{E_{\rm jet1}^{\rm measure} - E_{\rm jet1}^{\rm fit}}{\sigma_{\rm jet1}}\right)\right) \times \frac{1}{\sigma_{\rm jet2}} \exp\left(-\frac{1}{2} \left(\frac{E_{\rm jet2}^{\rm measure} - E_{\rm jet2}^{\rm fit}}{\sigma_{\rm jet2}}\right)\right) \\ & \frac{1}{\sigma_{x}^{\not \!\!E_{T}}} \exp\left(-\frac{1}{2} \left(\frac{\not\!\!E_{x}^{\rm measure} - \not\!\!E_{x}^{\rm fit}}{\sigma_{x}^{\not \!\!E_{T}}}\right)\right) \times \frac{1}{\sigma_{y}^{\not \!\!E_{T}}} \exp\left(-\frac{1}{2} \left(\frac{\not\!\!E_{y}^{\rm measure} - \not\!\!E_{y}^{\rm fit}}{\sigma_{y}^{\not \!\!E_{T}}}\right)\right) \end{split}$$

Дk

- The ratio of  $A_{\rm FB}^{tt}/A_{\rm FB}^{\ell}$  observed to be consistent when  $t\bar{t}$  produced unpolarized and decay like SM
- Based on CDF  $A_{\rm FB}^{t\bar{t}}$  result (0.16  $\pm$  0.05), this yields prediction of 0.070 <  $A_{\rm FB}^{\ell}$  < 0.076