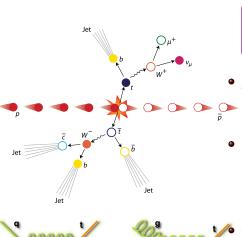

Measurement of the Forward-Backward Asymmetry of $t\bar{t}$ at the Fermilab Tevatron

Ziqing Hong

University of Florida Jan. 14, 2015

The Standard Model - Top Quark

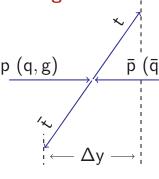


Top Quark

- Observed at Tevatron (1995)
- Very heavy
 - $m_t \simeq 173 \; \mathrm{GeV/c^2}$
- 🖁 Very short lived
 - No time to form hadrons
 - Unique opportunity to study a "bare" quark

Fascinating particle
Properties need to be further understood

Top-Quark Pair at Tevatron



Top-quark pair production at the Fermilab **Tevatron**

- pp̄ collision at Tevatron
 - CP even initial state
 - pp collision at LHC
- Unique production mechanism
 - 85% quark annihilation (a) 15% gluon fusion (b)
 - LHC is gluon fusion dominated
- \sim \sim 70,000 $tar{t}$ produced
- Tevatron sensitive to certain top properties

(b)

- \bullet Cross-section, mass and width measured & agree with SM What else can we learn about $t\bar{t}$ produced at Tevatron?
- Angular distribution

$$ullet$$
 Simplest observable: forward-backward asymmetry (A_{FB})

\(\bar{p}\) (\(\bar{q}\), g) Does top quark prefer proton direction or the opposite?

- No asymmetry in leading order SM
- Slight asymmetry starting from next-to-leading order (NLO)
- Data show deviation from prediction
- Hot topic at Tevatron for years

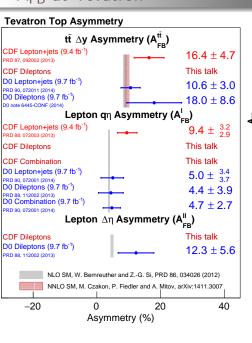
A_{FB} observables

Three observables to quantify A_{FB}

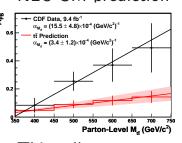
• A_{FB} of rapidity difference (Δy) between top and anti-top

$$A_{\mathsf{FB}}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

- Need top momenta reconstruction
- A_{FB} of lepton pseudorapidity (η_ℓ)


$$\mathcal{A}_{\mathsf{FB}}^\ell = rac{\mathcal{N}(q_\ell \eta_\ell > 0) - \mathcal{N}(q_\ell \eta_\ell < 0)}{\mathcal{N}(q_\ell \eta_\ell > 0) + \mathcal{N}(q_\ell \eta_\ell < 0)}$$

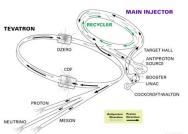
- Also probing top decay properties
- A_{FB} of lepton η difference $(\Delta \eta)$

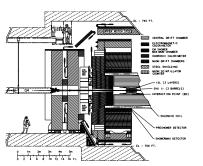

$$A_{\mathsf{FB}}^{\ell\ell} = rac{\mathit{N}(\Delta \eta > 0) - \mathit{N}(\Delta \eta < 0)}{\mathit{N}(\Delta \eta > 0) + \mathit{N}(\Delta \eta < 0)}$$

Only measurable when both W-bosons decay leptonically

A_{FB} at Tevatron

- All higher than prediction
- Perhaps more interesting: $A_{FB}^{t\bar{t}}$ vs. $m_{t\bar{t}}$ deviates from NLO SM prediction

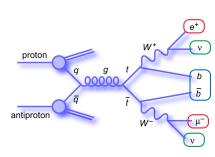

This talk:


 A_{FB}

- Following up in CDF Dilepton channel
- Best world understanding of top

Tevatron and CDF

Tevatron


- $p\bar{p}$ collider
- Center-of-mass energy 1.96 TeV
- Run II delivered 12fb⁻¹
- ullet Acquired $\sim 10 {
 m fb}^{-1}$ by CDF

CDF

- General purpose detector
 - 1.4 T magnetic field
 - Tracking, Calorimeter and Muon systems
- Coverage in $t\bar{t}$ dilepton
 - Electron: $|\eta| < 2.0$
 - \bullet Muon : $|\eta| < 1.1$
 - Jets : $|\eta| < 2.5$

$tar{t} ightarrow ext{dilepton}$ Event selection

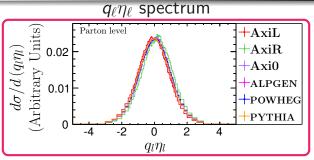
- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons
 - At least two jets
 - $E_T > 25 \text{ GeV}$
- Use slightly improved $t\bar{t} \rightarrow$ dilepton data selection criteria (details in the backups)

$t\bar{t} \rightarrow \text{dilepton}$

Signal and background modeling

Signal modeling:

- Prediction with POWHEG MC (NLO SM w/ only QCD correction)
- Background modeling:
 - Diboson production ($WW, WZ, ZZ, W\gamma$) MC prediction
 - Z/γ^* +jets MC prediction with correction from data
 - W+jets Data-based
 - $t\bar{t}$ non-dilepton
 - Prediction with POWHEG MC


Source	Events	
Diboson	31.4±5.9	
$Z/\gamma^*+{\sf jets}$	$50.5 {\pm} 6.2$	
W+jets fakes	64±17	
$tar{t}$ non-dilepton	14.6±0.8	
Total background	160±21	
$t ar{t} \ (\sigma = 7.4 \ \mathrm{pb})$	408±19	
Total SM expectation	568±40	

Observed

Agreement is excellent (Maybe too good? Probably luck)

569

A_{FB}^{ℓ} Methodology

- ullet Start with A_{FB}^ℓ measurement
- ullet Benchmark models with $-0.06 < A_{ extsf{FB}}^{\ell} < 0.15$
- Difference among models are small
 - Shapes almost identical, tiny shift in the mean
- Acceptance in detector limited
 - ullet No acceptance beyond $|q_\ell\eta_\ell|=2$
- Need a clever way to measure the subtle difference

A_{FR}^{ℓ} Methodology • Decomposition of $q_{\ell}\eta_{\ell}$ spectrum into symmetric and

asymmetric components:

$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell}) + \mathcal{N}(-q_{\ell}\eta_{\ell})}{2}; \mathcal{A}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell}) - \mathcal{N}(-q_{\ell}\eta_{\ell})}{\mathcal{N}(q_{\ell}\eta_{\ell}) + \mathcal{N}(-q_{\ell}\eta_{\ell})}$$

$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell}) - \mathcal{N}(q_{\ell}\eta_{\ell})}{\mathcal{N}(q_{\ell}\eta_{\ell}) + \mathcal{N}(-q_{\ell}\eta_{\ell})}$$

$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell}) - \mathcal{N}(q_{\ell}\eta_{\ell})}{\mathcal{N}(q_{\ell}\eta_{\ell}) + \mathcal{N}(q_{\ell}\eta_{\ell})}$$

$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell}) - \mathcal{N}(q_{\ell}\eta_{\ell})}{\mathcal{N}(q_{\ell}\eta_{\ell})}$$

$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell}) - \mathcal{N}(q_{\ell}\eta_{\ell})}{\mathcal{N}(q_{\ell}\eta_{\ell})}$$

$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell}) - \mathcal{N}(q_{\ell}\eta_{\ell})$$

$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell})}{\mathcal{N}(q_{\ell}\eta_{\ell})}$$

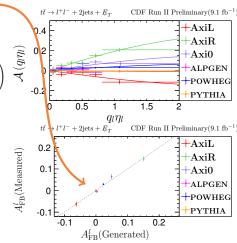
$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell}) - \mathcal{N}(q_{\ell}\eta_{\ell})}{\mathcal{N}(q_{\ell}\eta_{\ell})}$$

$$\mathcal{S}(q_{\ell}\eta_{\ell}) = \frac{\mathcal{N}(q_{\ell}\eta_{\ell})}{\mathcal{N}(q_{\ell$$

0.4 Parton level AxiR 0.2 -Axi0 ALPGEN POWHEG PYTHIA 4 $q_l\eta_l$ Validation summarized as

• $S(q_{\ell}\eta_{\ell})$ consistent among models

ullet $\mathcal{A}(q_\ell\eta_\ell)$ sensitive to different $\mathcal{A}_{\mathsf{FB}}^\ell$


• Well modeled with $a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$ | Z. Hong et al.

with
$$a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$$
 PRD **90**, 014040 (2014)
Z. Hong et al.
$$A_{\mathsf{FB}}^{\ell} = \frac{\int_{0}^{\infty} \mathrm{d}q_{\ell}\eta_{\ell}\mathcal{A}(q_{\ell}\eta_{\ell})\mathcal{S}(q_{\ell}\eta_{\ell})}{\int_{0}^{\infty} \mathrm{d}q'_{\ell}\eta'_{\ell}\mathcal{S}(q'_{\ell}\eta'_{\ell})}$$

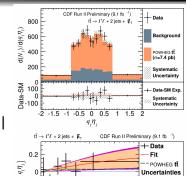
• A_{FR}^{ℓ} rewritten as

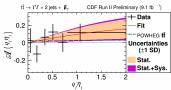
A_{FB}^{ℓ} Methodology with Detector Resp.

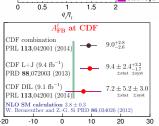
- ullet Detector response mostly cancels out in $\mathcal{A}(oldsymbol{q}_\ell\eta_\ell)$
- No noticeable bias observed
- Measurement strategy:
 - Subtract off backgrounds
 - ullet Fit $\mathcal{A}(q_\ell\eta_\ell)$ with $a\cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$
 - Obtain $\mathcal{S}(q_\ell \eta_\ell)$ from POWHEG simulation at parton-level
 - ullet Calculate A_{FB}^ℓ with $\mathcal{A}\ \&\ \mathcal{S}$
- Correct for detector response and extrapolate to inclusive $A_{\rm FB}^{\ell}$ simultaneously

A_{FR}^{ℓ} in dilepton and CDF combination

• Measure A_{FB}^{ℓ} with CDF full dataset in dilepton (9.1 fb^{-1})

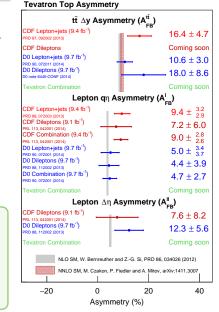

$$A_{\rm FB}^{\ell} = 0.072 \pm 0.060$$


Cf.
$$A_{FB}^{\ell}(SM,NLO)=0.038\pm0.003$$


- Dominant uncertainty is statistical
- Table of systematics in backup
- Combined $A_{\sf FR}^\ell$ measurements at CDF with BLUE
- Result is 2σ larger than NLO SM prediction:

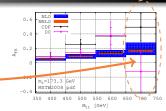
$$A_{\mathrm{FB}}^{\ell} = 0.090^{+0.028}_{-0.026}$$

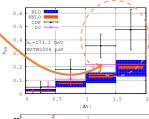
• PRL **113**, 042001 (2014) (CDF)

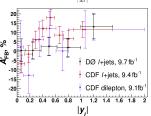


 $A_{FR}^{\ell}(\%)$

Best-world understanding of top AFF


- CDF Dilepton $A_{\text{FB}}^{t\bar{t}}$ measurement well underway
- All current results higher than NLO (and NNLO) SM predictions
- Recent preliminary NNLO
 SM prediction suggests
 tension reduced


NNLO QCD calculation needed for top kinematics! Especially important for precision measurements at LHC



Best-world understanding of top A_{FB}

- Differential A_{FB} show mostly good agreement between CDF and D0
 - Some areas under study
 - This might account for the differences
- Both experiments working to understand the differences
 - Are the two experiments measuring the same observables?
 - Different techniques causing bias in either/both experiments?
 - Statistical fluctuation?
- Plan: understand the difference and make Tevatron combinations of $A_{\rm FB}^{\ell}$, $A_{\rm FB}^{\ell\ell}$ and $A_{\rm FB}^{t\bar{t}}$

Conclusions: Top A_{FB}

- The A_{FB} of top-pairs at the Tevatron remains a story does not yet hang together well, but at long last may be resolved
- Measurements of $A_{\rm FB}^{t\bar{t}}$, $A_{\rm FB}^{\ell}$ and $A_{\rm FB}^{\ell\ell}$ provide complementary handles to probe the production and decay of $t\bar{t}$
- $A_{\rm FB}^{\ell}$ at CDF shows 2σ deviation from NLO SM, but may be consistent with NNLO. Only time will tell.
- Measurement of A_{FB}^{tt} in dilepton in progress
- Working on understanding the difference between CDF and D0 measurements
- Full NNLO SM calculation on the horizon
- Either way it has been an exciting chase for new physics

Backup Slides

Backup slides

$tar{t} ightarrow ext{dilepton}$ event selection criteria

Exactly two leptons with $\it E_{T}$ $>$ 20 ${ m GeV}$ and passing standard identification requirements with	ith
following modifications	

-COT radius exit > 140 cm for CMIO

 $-\chi^2/ndf <$ 2.3 for muon tracks

At least one trigger lepton

A least one trigger repteri

At least one tight and isolated lepton

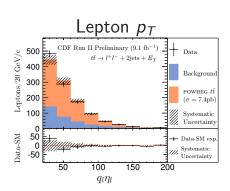
At most one lepton can be loose and/or non-isolated

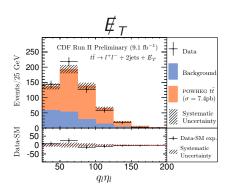
MetSig (= $\frac{E_T}{\sqrt{E_T^{um}}}$) > 4 $\sqrt{\rm GeV}$ for ee and $\mu\mu$ events where 76 $\rm GeV/c^2 < m_{ll} < 106~GeV/c^2$

ДŘ

 $m_{ll} > 10 \text{ GeV/c}^2$

Two or more jets with $E_{\rm T} > 15~{
m GeV}$ within $|\eta| < 2.5$


 $H_T > 200 \; \mathrm{GeV}$


Opposite sign of two leptons

Saseline Cuts

Signal

$t \overline{t} ightarrow ext{dilepton}$ Signal and background modeling Validation

Agreement is excellent

Systematic uncertainty of A_{FB}^ℓ measurement

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
Source of Uncertainty	of Uncertainty Value (A_{FB}^{ℓ})	
(A_{FB}^ℓ)		
Backgrounds	0.029	
Asymmetric Modeling	0.006	
Jet Energy Scale	0.004	
Symmetric Modeling	0.001	
Total Systematic	0.030	
Statistical	0.052	
Total Uncertainty	0.060	

Systematic uncertainty of $A_{\mathsf{FB}}^{\ell\ell}$ measurement

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
Source of Uncertainty	rainty Value	
$(A_{\sf FB}^{\ell\ell})$		
Backgrounds	0.037	
Asymmetric Modeling	0.012	
Jet Energy Scale	0.003	
Symmetric Modeling	0.004	
Total Systematic	0.039	
Statistical	0.072	
Total Uncertainty	0.082	

Comparison of A_{FB}^{ℓ} among SM prediction and measurements at CDF and D0.

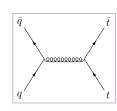
Source	A_{FB}^ℓ	Description	Reference	
Calculation	0.038±0.003	NLO SM	PRD 86 ,034026 (2012)	
	$0.094^{+0.032}_{-0.029}$	Lepton + jets	PRD 88 ,072003 (2013)	
CDF	0.072 ± 0.060	Dilepton	PRL 113 ,042001 (2014	
	$0.090^{+0.028}_{-0.026}$	Combination	THE 113,042001 (2014)	
D0	$0.042^{+0.029}_{-0.030}$	Lepton+jets, $ q_\ell \eta_\ell < 1.5$	arXiv:1403.1294	
DU	0.044 ± 0.039	Dilepton	PRD 88 ,112002 (2013)	
	0.047 ± 0.027	Combination	arXiv:1403.1294	

A_{FB}^{ℓ} CDF combination

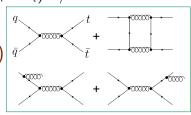
CDF Run II Preliminary

Source of uncertainty	$L+J (9.4fb^{-1})$	DIL (9.1fb^{-1})	Correlation
Backgrounds	0.015	0.029	0
Recoil modeling (Asymmetric modeling)	$+0.013 \\ -0.000$	0.006	1
Symmetric modeling	-	0.001	
Color reconnection	0.0067	-	
Parton showering	0.0027	-	
PDF	0.0025	-	
$_{ m JES}$	0.0022	0.004	1
IFSR	0.0018	-	
Total systematic	$+0.022 \\ -0.017$	0.030	
Statistics	0.024	0.052	0
Total uncertainty	$+0.032 \\ -0.029$	0.060	

$$\begin{split} M_{l^{+}\nu}^{2} &= (E_{l^{+}} + E_{\nu})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu})^{2} = M_{W}^{2} \\ M_{l^{-}\bar{\nu}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}})^{2} = M_{W}^{2} \\ M_{l^{+}\nu b}^{2} &= (E_{l^{+}} + E_{\nu} + E_{b})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu} + \vec{p}_{b})^{2} = M_{t}^{2} \\ M_{l^{-}\bar{\nu}\bar{b}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}} + E_{\bar{b}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}} + \vec{p}_{\bar{b}})^{2} = M_{t}^{2} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{x} &= (\not E_{T})_{x} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{y} &= (\not E_{T})_{y} \end{split}$$


$$\begin{split} \mathcal{L}(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_b, E_{\bar{b}}) = & P(p_z^{t\bar{t}}) P(p_T^{t\bar{t}}) P(M^{t\bar{t}}) \times \\ & \frac{1}{\sigma_{\rm jet1}} \exp\left(-\frac{1}{2} \left(\frac{E_{\rm jet1}^{\rm measure} - E_{\rm jet1}^{\rm fit}}{\sigma_{\rm jet1}}\right)\right) \times \frac{1}{\sigma_{\rm jet2}} \exp\left(-\frac{1}{2} \left(\frac{E_{\rm jet2}^{\rm measure} - E_{\rm jet2}^{\rm fit}}{\sigma_{\rm jet2}}\right)\right) \\ & \frac{1}{\sigma_x^{\not E_T}} \exp\left(-\frac{1}{2} \left(\frac{\not E_x^{\rm measure} - \not E_x^{\rm fit}}{\sigma_x^{\not E_T}}\right)\right) \times \frac{1}{\sigma_y^{\not E_T}} \exp\left(-\frac{1}{2} \left(\frac{\not E_y^{\rm measure} - \not E_y^{\rm fit}}{\sigma_y^{\not E_T}}\right)\right) \end{split}$$

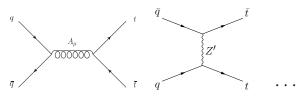
- The ratio of $A_{\rm FB}^{tt}/A_{\rm FB}^{\ell}$ observed to be consistent when $t\bar{t}$ produced unpolarized and decay like SM
- Based on CDF $A_{\rm FB}^{t\bar{t}}$ result (0.16 \pm 0.05), this yields prediction of 0.070 < $A_{\rm FB}^{\ell}$ < 0.076


$A_{\rm FB}^{t\bar{t}}$ at Tevatron

What does the SM predict?

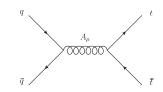
- No net preference in leading order diagram
- At next-to-leading order (NLO): top quark slightly prefers proton direction (forward)

- →Interference among diagrams
- \bullet We compare to $A_{ ext{FB}}^{tar{t}}(ext{NLO}) = 0.088 \pm 0.006$ (PRD 86,034026 (2012))
 - ullet Conventional renormalization scale $\left(\mu_R\sim m_t
 ight)$ w/ EWK corrections.
- However, different SM calculation gives different answers(0.050-0.125)
- SM calculation still progressing
 - Preliminary NNLO calculation later



Possible alternative hypotheses?

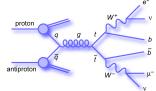
Models beyond the SM can predict large $A_{\sf FB}^{tar t}$


- Axigluons
- Flavor-changing Z' boson
- Beyond-SM W' boson
- Beyond-SM Higgs boson
- Extra dimensions

•

A_{FB}^ℓ at Tevatron

- NLO SM prediction: $A_{\rm FR}^{\ell} = 0.038 \pm 0.003$
 - Conventional renormalization scale $(\mu_R \sim m_t)$ w/ EWK corrections.
- Prediction with new physics?
- Based on CDF $A_{\rm FB}^{t\bar{t}}$ result (0.16 \pm 0.05), assuming everything else SM-like: $0.070 < A_{\rm FB}^{\ell} < 0.076$
- In new physics models, $A_{\rm FB}^{t\bar{t}}$ and $A_{\rm FB}^{\ell}$ are **not correlated**.
- Independent measurements of $A_{\rm FB}^{t\bar{t}}$ and $A_{\rm FB}^{\ell}$ are crucial


Example: Axigluon model $(\text{m} = 200 \ \text{GeV/c}^2, \Gamma = 50 \ \text{GeV}) \\ \rightarrow A_{\text{FB}}^{t\bar{t}} = 0.12 \\ -0.06 < A_{\text{FB}}^{\ell} < 0.15 \\ \text{depending on handedness of couplings} \\ (\text{PRD 87,034039 (2013)})$

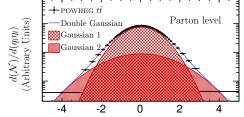
$$\mathcal{A}_{\mathsf{FB}}^{\ell\ell}$$

Lepton pair A_{FB}

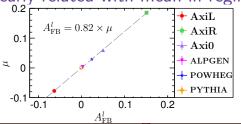
$$\bullet \ \ \, A_{\mathsf{FB}}^{\ell\ell} = \frac{\textit{N}(\Delta \eta > 0) - \textit{N}(\Delta \eta < 0)}{\textit{N}(\Delta \eta > 0) + \textit{N}(\Delta \eta < 0)}$$

- NLO SM prediction: $A_{\rm FB}^{\ell\ell} = 0.048 \pm 0.004$
- Larger expectations
- Only defined in dilepton, smaller statistics
- Provide extra information to help constraining new physics models

Alternative Signal Modeling


- What does the η_ℓ spectra look like in various scenarios?
 - Test the measurement with both SM and BSM models
- Simulate $t\bar{t}$ in various $t\bar{t}$ production mechanisms
 - SM sample: PYTHIA/ALPGEN (LO) and POWHEG (NLO)
 - Benchmark BSM model w/ axigluon
 - Many more simulated and studied
- ullet Span large range of A_{FB}^ℓ and $A_{\mathsf{FB}}^{\ell\ell}$

Model	A_{FB}^ℓ (Parton Level)	$A_{FB}^{\ell\ell}$ (Parton Level)	Description	
AxiL	-0.063(2)	-0.092(3)	Left-handed	Tree-level axigluon
AxiR	0.151(2)	0.218(3)	Right-handed	$m = 200~{\rm GeV/c^2}$ $\Gamma = 50~{\rm GeV}$
Axi0	0.050(2)	0.066(3)	Unpolarized	
ALPGEN	0.003(1)	0.003(2)	Tree-level Standard Model	
PYTHIA	0.000(1)	0.001(1)	LO Standard Model	
POWHEG	0.024(1)	0.030(1)	NLO Standard Model	
Calculation	0.038(3)	0.048(4)	NLO SM (PRD 86 034026 (2012))	


A_{FB}^{ℓ} Methodology Study

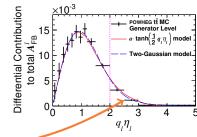
Why does the $a \cdot \tanh$ model work so well?

• $q_\ell \eta_\ell$ spectrum actually well described by a double-Gaussian


• $A_{\rm FB}^\ell$ comes from shift in mean $\to A_{\rm FB}^\ell$ linearly related with mean in regime of interest

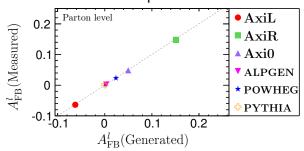
Summarized as PRD **90**, 014040 (2014)
Z. Hong *et al.*

A_{FB}^{ℓ} Methodology Study


• Double-Gaussian does better job in modeling differential asymmetry in large $q_\ell \eta_\ell$ region

- ullet $\mathcal{A}(q_\ell\eta_\ell)$ still most sensitive way to measure $\mathcal{A}_{\mathsf{FB}}^\ell$
 - Provides better effective measure of mean
 - Acceptance of detector mostly cancels out

A_{FB}^{ℓ} Methodology Study

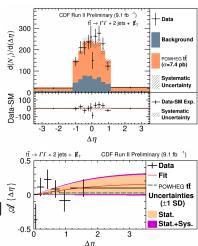

- Another way of looking at data: Differential contribution to A_{FB}^{ℓ}
- What do we learn?
 - $_{\bullet}$ Asymmetry mostly from $|\eta|<2.0$
 - Best detector coverages here
 - ullet $a \cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$ is excellent for $|q_\ell\eta_\ell| < 2.5$
 - Mismodeling in region with small contribution

- More than good enough
- Moving forward with a · tanh model with confidence

A_{FB}^{ℓ} Methodology - Introduction

• a · tanh model works well at parton level

• Does detector response affect the measurement?

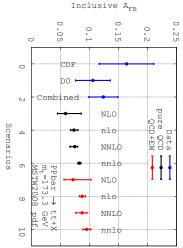

$A_{\mathsf{FR}}^{\ell\ell}$ in dilepton

- Measurement techniques validated for $A_{\sf FR}^{\ell\ell}$ as well.
- Measure $A_{\sf FR}^{\ell\ell}$ with the same method

$$A_{\mathsf{FB}}^{\ell\ell} = 0.076 \pm 0.072 (\mathsf{stat}) \pm 0.039 (\mathsf{syst}) \\ = 0.076 \pm 0.081$$

Cf.
$$A_{EB}^{\ell}(SM,NLO) = 0.048 \pm 0.004$$

- Dominant uncertainty is statistical 8
- Result consistent with SM



NNLO A_{FB} Prediction

- Very recently, preliminary NNLO prediction suggests tension resolved
- NNLO QCD + LO EW $ightarrow A_{\mathsf{FB}}^{t\bar{t}} = 9.5 \pm 0.7\%$
- Deviation between measurements and prediction no longer significant

NNLO QCD calculation needed for top kinematics! Especially important for precision measurements happening at LHC M. Czakon, P. Fiedler and A. Mitov

arXiv:1411.3007

