Measurement of the Forward-Backward Asymmetry of $t\bar{t}$ at the Fermilab Tevatron And Research Interests for Run 2 at the LHC

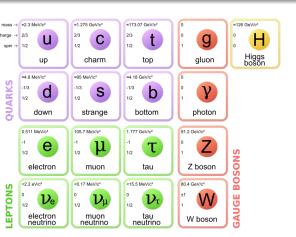
Ziqing Hong

University of Illinois at Urbana-Champaign Dec. 9, 2014

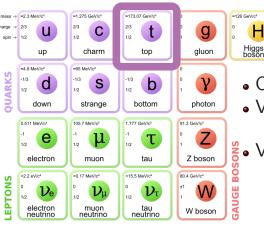
Outline

- Present work: Top forward-backward asymmetry
- Research interests on ATLAS at LHC Run 2

Will start with Top forward–backward asymmetry


Top forward–backward asymmetry: An exciting chase for new physics

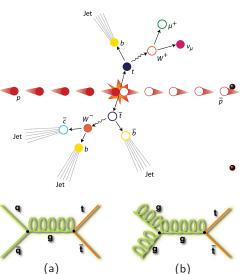
- Hot topic at the Tevatron for years
- Will be glossing over the gory details
- And focusing on the measurement techniques, the data, and the interpretation of them


Table of contents for Top Asymmetry

- Introduction
 - The Standard Model and the Top Quark
 - $A_{FB}^{t\bar{t}}$: Smoking gun for new physics?
 - Searching for more evidence
- Tevatron and CDF
- $lackbox{1}{t} o \mathsf{dilepton}$
- $oldsymbol{\Phi} A_{\mathsf{FB}}^\ell$ measurement methodology
- **5** A_{FB}^{ℓ} in dilepton and combination at CDF
- **6** Best-world understanding of top A_{FB}
- Conclusions

The Standard Model - Top Quark

The Standard Model - Top Quark

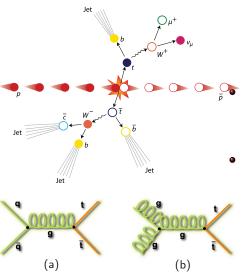


Top Quark

- Observed at Tevatron (1995)
- Very heavy
 - $m_t \simeq 173 \; \mathrm{GeV/c^2}$
- 🖁 Very short lived
 - No time to form hadrons
 - Unique opportunity to study a "bare" quark

Fascinating particle
Properties need to be further understood

Top-Quark Pair at Tevatron



Top-quark pair production at the Fermilab **Tevatron**

pp̄ collision at Tevatron

- CP even initial state
- Different from pp collision and P even initial state at LHC
- Unique production mechanism
 - 85% quark annihilation (a)15% gluon fusion (b)
 - LHC is gluon fusion dominated (> 90%)

Top-Quark Pair at Tevatron

Top-quark pair production at the Fermilab **Tevatron**

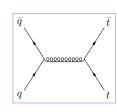
 $\sim 70,000 \ t\bar{t}$ produced

- Study events to learn how particles interact
- Tevatron experiment sensitive to certain top-quark
 production mechanisms and properties

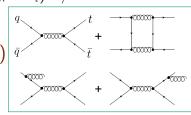
$A_{\rm FB}^{t\bar{t}}$ at Tevatron

 \bullet Cross-section, mass and width measured & agree with SM What else can we learn about $t\bar{t}$ produced at Tevatron?

Angular distribution


- Simplest observable: forward-backward asymmetry (A_{FB}) p(q,g) Does top quark prefer proton direction or the opposite?
 - Can measure rapidity difference between top and anti-top
 - Define A_{FB} of $t\bar{t}$ production:

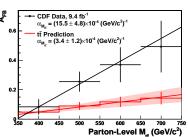
$$y=rac{1}{2}\lnrac{E+p_z}{E-p_z} \hspace{1cm} A_{\mathsf{FB}}^{tar{t}}=rac{N(\Delta y>0)-N(\Delta y<0)}{N(\Delta y>0)+N(\Delta y<0)}$$


$A_{\rm FB}^{t\bar{t}}$ at Tevatron

What does the SM predict?

- No net preference in leading order diagram
- At next-to-leading order (NLO): top quark slightly prefers proton direction (forward)

- →Interference among diagrams
- ullet We compare to $A_{\mathsf{FB}}^{tar{t}}(\mathsf{NLO}) = 0.088 \pm 0.006$ (PRD 86,034026 (2012))
 - ullet Conventional renormalization scale $(\mu_R \sim m_t)$ w/ EWK corrections.
- However, different SM calculation gives different answers(0.050-0.125)
- SM calculation still progressing
 - Preliminary NNLO calculation later


$A_{FB}^{t\bar{t}}$ at Tevatron

Previous experimental results?

CDF:
$$A_{\mathsf{FB}}^{t\bar{t}} = 0.164 \pm 0.047$$
(Lep+jets, PRD **87**, 092002 (2013))

D0:
$$A_{
m FB}^{tt}=0.106\pm0.030$$
(Lep+jets, PRD **90**, 072011 (2014)) $A_{
m FB}^{tar t}=0.180\pm0.086$ (Dilepon, D0 note 6445-CONF (2014))

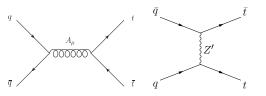
- Perhaps more important: $A_{\text{FB}}^{t\bar{t}}$ vs. $m_{t\bar{t}}$ deviates from NLO SM prediction

$A_{\rm FR}^{t\bar{t}}$ at Tevatron

- ullet Anomalously large $A_{\mathsf{FB}}^{tar{t}}$ at Tevatron
- Calling for more accurate SM calculation?

Or

• Smoking gun for new physics?

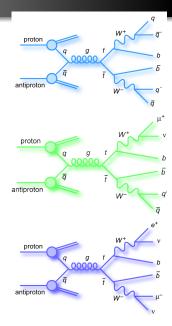

$A_{\text{FB}}^{t\bar{t}}$ at Tevatron

Possible alternative hypotheses?

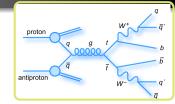
Models beyond the SM can predict large $A_{\text{FB}}^{t\bar{t}}$

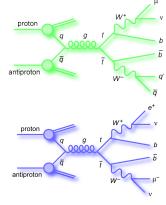
- Axigluons
- Flavor-changing Z' boson
- Beyond-SM W' boson
- Beyond-SM Higgs boson
- Extra dimensions

•

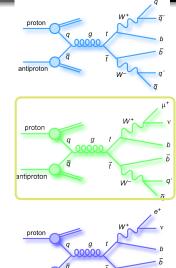

$A_{FB}^{t\bar{t}}$ at Tevatron

How to look for more evidence for/against new physics?

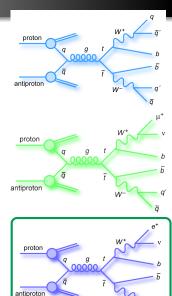

Pursue in two directions


- Measure $A_{\mathsf{FB}}^{t\bar{t}}$ with more $t\bar{t}$ events in other final states
- Measure other related observables

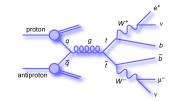
- How does top quark decay?
- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on W decay mode:



- How does top quark decay?
- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on W decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$



- How does top quark decay?
- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on W decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$
 - Lepton+jets←Previous result
 - Decent branching fraction
 - Lepton provides additional handle



- How does top quark decay?
- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on W decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$
 - $\bullet \ \, \mathsf{Lepton} \! + \! \mathsf{jets} \! \leftarrow \! \mathbf{Previous} \,\, \mathbf{result}$
 - Decent branching fraction
 - Lepton provides additional handle
 - Dilepton ←Focus of this talk
 - Small branching fraction
 - Leptons precisely measured
 - Two ν 's, hard to reconstruct $t\bar{t}$

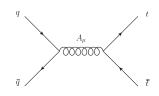
Additional $t\bar{t}$ events in dilepton

- Previous CDF measurement based on lepton+jets final state
- Can measure $A_{\text{FR}}^{t\bar{t}}$ in dilepton


- Independent dataset with extended detector coverage, different background constitution and estimation methods
- Need to reconstruct 4-momenta of $t\bar{t}$ \rightarrow Tough job in dilepton
- More on this later

Other observables?

- Besides $A_{\rm FB}^{t\bar{t}}$, two equally important observables with leptons
- Leptonic A_{FB}


$$\bullet \hspace{0.5cm} \boxed{ A_{\mathsf{FB}}^{\ell} = \frac{\textit{N}(\textit{q}_{\ell}\eta_{\ell}>0) - \textit{N}(\textit{q}_{\ell}\eta_{\ell}<0)}{\textit{N}(\textit{q}_{\ell}\eta_{\ell}>0) + \textit{N}(\textit{q}_{\ell}\eta_{\ell}<0)} }$$

- Also lepton pair $A_{\rm FB}$ defined with lepton η difference, only in dilepton
- Why consider A_{FR}^{ℓ} ?
 - Lepton angles precisely measured
 - Tend to follow direction of parent tops

A_{FR}^{ℓ} at Tevatron

- NLO SM prediction: $A_{ER}^{\ell} = 0.038 \pm 0.003$
 - Conventional renormalization scale $(\mu_R \sim m_t)$ w/ EWK corrections.
- Prediction with new physics?
- Based on CDF $A_{\rm FB}^{t\bar{t}}$ result (0.16 ± 0.05) , assuming everything else SM-like: $0.070 < A_{\mathtt{FR}}^{\ell} < 0.076$
- In new physics models, $A_{\sf FR}^{tt}$ and $A_{\sf FR}^\ell$ are not correlated.
- Independent measurements of A_{FR}^{tt} and A_{FR}^{ℓ} are crucial

Example:

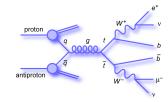
Axigluon model

$$(m = 200 \text{ GeV/c}^2, \Gamma = 50 \text{ GeV})$$

$$\rightarrow A_{\rm FB}^{tt} = 0.12$$

$$-0.06 < A_{\rm FB}^{\ell} < 0.15$$
 depending on handedness of couplings

(PRD 87,034039 (2013))


Lepton pair A_{FB}

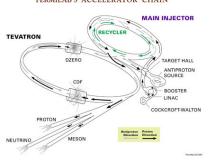
$$\bullet \hspace{0.2cm} \middle| \hspace{0.2cm} A_{\mathsf{FB}}^{\ell\ell} = \frac{\textit{N}(\Delta \eta > 0) - \textit{N}(\Delta \eta < 0)}{\textit{N}(\Delta \eta > 0) + \textit{N}(\Delta \eta < 0)}$$

- NLO SM prediction: $A_{\rm FR}^{\ell\ell} = 0.048 \pm 0.004$
- Larger expectations

 Provide extra information to help constraining new physics models

A_{FB}^ℓ at Tevatron

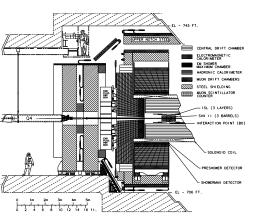
ullet Measurement of A_{FB}^ℓ in lepton+jets at CDF


$$A_{\text{FB}}^{\ell} = 0.094_{-0.029}^{+0.032}$$
, PRD **88**, 072003 (2013)

- ullet 1.9 σ larger than NLO SM calculation of 0.038 \pm 0.003
- Large $A_{\mathsf{FB}}^{t\bar{t}}$ holds in A_{FB}^{ℓ} in the same dataset
- New results presented today:
 - Confirm or deny this anomaly large asymmetry ($A_{\rm FB}^{tt}$ and $A_{\rm FB}^{\ell}$) with the dilepton final state
 - Measure $A_{FB}^{\ell\ell}$
 - What is the best-world-understanding of the A_{FB} results?

Tevatron and CDF

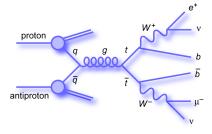
Tevatron


FERMILAB'S ACCELERATOR CHAIN

- $p\bar{p}$ collider
- Center-of-mass energy
 1.96 TeV
- Run II delivered 12fb⁻¹
- ullet Acquired $\sim 10 {
 m fb}^{-1}$ by CDF

Tevatron and CDF

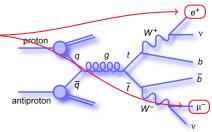
CDF


- General purpose detector
 - Solenoid (1.4 T magnetic field)
 - Tracking system
 - Calorimeter system
 - Muon detectors
- ullet Coverage in $tar{t}$ dilepton
 - Electron: $|\eta| < 2.0$
 - Muon : $|\eta| < 1.1$
 - Jets : $|\eta| < 2.5$

$tar{t} ightarrow ext{dilepton}$

- ullet $A_{\mathsf{FB}}^{tar{t}}$ and A_{FB}^ℓ measurement in lepton+jets: done
- ullet Go after the next important final state: tar t o dilepton

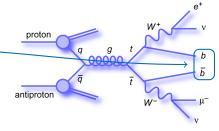
$t\bar{t} \rightarrow \text{dilepton}$ Event selection


• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

$t\bar{t} \rightarrow \text{dilepton}$ Event selection

• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

• Two opposite charged leptons

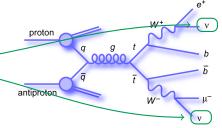

ДŘ

$t\bar{t} \rightarrow \text{dilepton}$ Event selection

• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

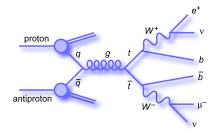
• Two opposite charged leptons

At least two jets


$t \bar{t} o ext{dilepton}$ Event selection

• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

• Two opposite charged leptons


• At least two jets

• $E_T > 25 \text{ GeV}$

$tar{t} ightarrow ext{dilepton}$ Event selection

- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons
 - At least two jets
 - $E_T > 25 \text{ GeV}$
- Use slightly improved $t\bar{t} \rightarrow$ dilepton data selection criteria (details in the backups)

$tar{t} ightarrow \mathsf{dilepton}$

Signal and background modeling

Signal modeling:

- Prediction with POWHEG MC (NLO SM w/ only QCD correction)
- Background modeling:
 - Diboson production (WW, WZ, ZZ, Wγ)
 MC prediction
 - $Z/\gamma^*+{
 m jets}$ MC prediction with correction from data
 - W+jets Data-based
 - tt̄ non-dilepton
 Prediction with POWHEG MC

Source	Events	
Diboson	31.4±5.9	
$Z/\gamma^*+{\sf jets}$	50.5±6.2	
W+jets fakes	64±17	
$tar{t}$ non-dilepton	14.6±0.8	
Total background	160±21	
$t ar{t} \ (\sigma = 7.4 \ \mathrm{pb})$	408±19	
Total SM expectation	568±40	

Observed

Agreement is excellent (Maybe too good? Probably luck)

569

$tar{t} ightarrow \mathsf{dilepton}$

Signal and background modeling

Deadistion with DOTHER MC

Signal modeling:

• Prediction with POWHEG INC	Source	Events
(NLO SM w/ only QCD correction)	Diboson	31.4±5.9
Background modeling:	Z/γ^* +jets	50.5±6.2

• Diboson production ($WW,WZ,ZZ,W\gamma$)

Glossed over all the gory details so to focus on

the measurement techniques, the data and the interpretation of them

14.6±0.8 160±21 408±19 568±40

569

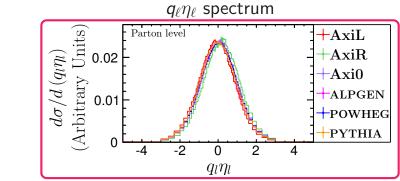
64 + 17

W+jets fakes

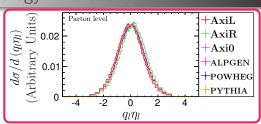
tt̄ non-dilepton
 Prediction with POWHEG MC

• Agreement is excellent (Maybe too good? Probably luck)

$tar{t} ightarrow \mathsf{dilepton}$

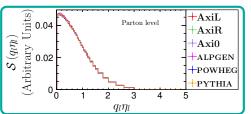

- Hard to reconstruct of 4-momenta of $t\bar{t}$ in dilepton
- ullet Measure A_{FB}^ℓ and $A_{\mathsf{FB}}^{\ell\ell}$ first
- ullet Continue with the full $A_{\mathsf{FB}}^{tar{t}}$ afterwards

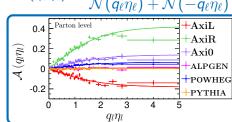
Alternative Signal Modeling

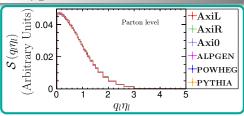

- What does the η_ℓ spectra look like in various scenarios?
 - Test the measurement with both SM and BSM models
- Simulate $t\bar{t}$ in various $t\bar{t}$ production mechanisms
 - SM sample: PYTHIA/ALPGEN (LO) and POWHEG (NLO)
 - Benchmark BSM model w/ axigluon
 - Many more simulated and studied
- ullet Span large range of A_{FB}^ℓ and $A_{\mathsf{FB}}^{\ell\ell}$

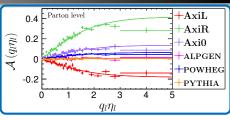
Model	A_{FB}^{ℓ} (Parton Level)	$A_{FB}^{\ell\ell}$ (Parton Level)	Description	
AxiL	-0.063(2)	-0.092(3)	Left-handed	Tree-level axigluon
AxiR	0.151(2)	0.218(3)	Right-handed	$m=200~{\rm GeV/c^2}$
Axi0	0.050(2)	0.066(3)	Unpolarized	$\Gamma=50~{\rm GeV}$
ALPGEN	0.003(1)	0.003(2)	Tree-level Standard Model	
PYTHIA	0.000(1)	0.001(1)	LO Standard Model	
POWHEG	0.024(1)	0.030(1)	NLO Standard Model	
Calculation	0.038(3)	0.048(4)	NLO SM (PRD 86 034026 (2012))	

A_{FB}^{ℓ} Methodology - Introduction

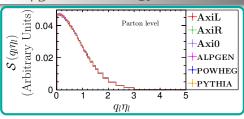


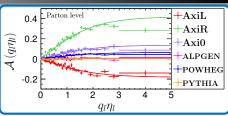

- Difference among models are small
 - Shapes almost identical, tiny shift in the mean
- Acceptance in detector limited
 - ullet No acceptance beyond $|q_\ell \eta_\ell| = 2$
- Need a clever way to measure the subtle difference

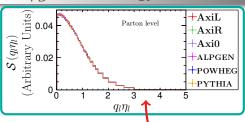


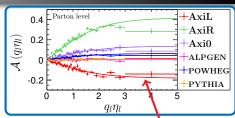

• Decomposition of $q_\ell \eta_\ell$ spectrum into symmetric and asymmetric components:

$$\mathcal{S}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}{2}; \mathcal{A}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) - \mathcal{N}(-q_\ell\eta_\ell)}{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}$$






• $\mathcal{S}(q_\ell \eta_\ell)$ consistent among models



- $\mathcal{S}(q_\ell \eta_\ell)$ consistent among models
- ullet $\mathcal{A}(q_\ell\eta_\ell)$ very different for different models
 - ullet Sensitive to different values of A_{FB}^ℓ

Дk

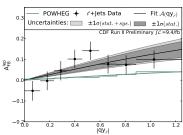
- $\mathcal{S}(q_\ell \eta_\ell)$ consistent among models
- $\mathcal{A}(q_{\ell}\eta_{\ell})$ very different for different models
 - \bullet Sensitive to different values of $A_{\rm FB}^\ell$

Not well modelled for $q_\ell \eta_\ell > 2.5$

- $\mathcal{A}(q_{\ell}\eta_{\ell})$ well modeled with $a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$ But contribution here is tiny
 - Detector only goes out to 2.0

Function empirically determined

A_{FB} Measurement Methodology

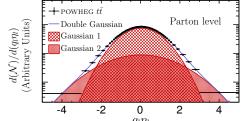

• $A_{\sf FR}^\ell$ rewritten as

$$\mathcal{A}_{\mathsf{FB}}^\ell = rac{\int_0^\infty \mathrm{d}q_\ell \eta_\ell \mathcal{A}(q_\ell \eta_\ell) \mathcal{S}(q_\ell \eta_\ell)}{\int_0^\infty \mathrm{d}q_\ell' \eta_\ell' \mathcal{S}(q_\ell' \eta_\ell')}$$

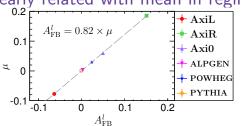
• $A_{\rm FB}^\ell$ measurement in lepton+jets based on this decomposition and $a \cdot \tanh(\frac{1}{2}q_\ell\eta_\ell)$ modeling

$$A_{\rm FB}^{\ell} = 0.094_{-0.029}^{+0.032}$$

 \bullet 1.9 σ larger than NLO SM

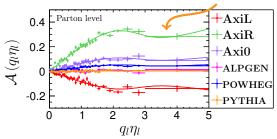


PRD 88 072003 (2013), CDF


A_{FB}^{ℓ} Methodology Study

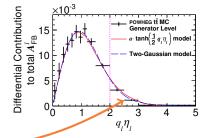
Why does the $a \cdot \tanh$ model work so well?

ullet $q_\ell\eta_\ell$ spectrum actually well described by a double-Gaussian

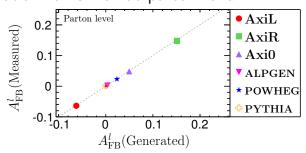

• $A_{\rm FB}^\ell$ comes from shift in mean $\to A_{\rm FB}^\ell$ linearly related with mean in regime of interest

Summarized as PRD **90**, 014040 (2014) Z. Hong *et al.*

A_{FB}^{ℓ} Methodology Study

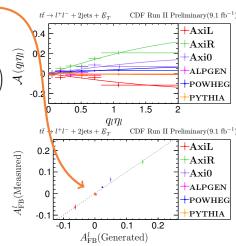

• Double-Gaussian does better job in modeling differential asymmetry in large $q_\ell \eta_\ell$ region

- ullet $\mathcal{A}(q_\ell\eta_\ell)$ still most sensitive way to measure $\mathcal{A}_{\mathsf{FB}}^\ell$
 - Provides better effective measure of mean
 - Acceptance of detector mostly cancels out


A_{FB}^ℓ Methodology Study

- Another way of looking at data: Differential contribution to A_{FB}^{ℓ}
- What do we learn?
 - $_{\bullet}$ Asymmetry mostly from $|\eta|<2.0$
 - Best detector coverages here
 - $a \cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$ is excellent for $|q_\ell\eta_\ell| < 2.5$
 - Mismodeling in region with small contribution

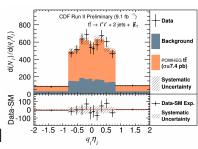
- More than good enough
- Moving forward with a · tanh model with confidence

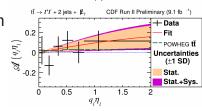

• a · tanh model works well at parton level

• Does detector response affect the measurement?

$\mathcal{A}_{\mathsf{FB}}^\ell$ Methodology with Detector Resp.

- ullet Detector response mostly cancels out in $\mathcal{A}(q_\ell\eta_\ell)$
- No noticeable bias observed
- Measurement strategy:
 - Subtract off backgrounds
 - ullet Fit $\mathcal{A}(q_\ell\eta_\ell)$ with $a\cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$
 - Obtain $\mathcal{S}(q_\ell \eta_\ell)$ from POWHEG simulation at parton-level
 - ullet Calculate A_{FB}^ℓ with $\mathcal{A}\ \&\ \mathcal{S}$
- Correct for detector response and extrapolate to inclusive $A_{\rm FB}^{\ell}$ simultaneously

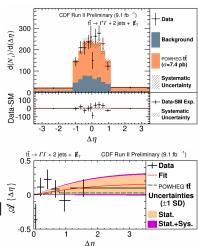

A_{FB}^{ℓ} in dilepton


• Measure A_{FB}^{ℓ} with CDF full dataset in dilepton (9.1 fb⁻¹)

$$A_{\mathsf{FB}}^{\ell} = 0.072 \pm 0.052 (\mathsf{stat}) \pm 0.030 (\mathsf{syst}) \\ = 0.072 \pm 0.060$$

Cf.
$$A_{EB}^{\ell}(SM,NLO) = 0.038 \pm 0.003$$

- Dominant uncertainty is statistical
- Table of systematic uncertainty in backup
- Result consistent with prediction of new physics from lepton+jets, but also consistent with SM

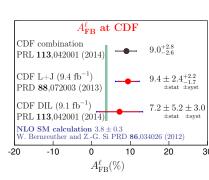

$A_{\rm FR}^{\ell\ell}$ in dilepton

- Measurement techniques validated for $A_{\sf FR}^{\ell\ell}$ as well.
- Measure $A_{\mathsf{FR}}^{\ell\ell}$ with the same method

$$A_{\mathsf{FB}}^{\ell\ell} = 0.076 \pm 0.072 (\mathsf{stat}) \pm 0.039 (\mathsf{syst}) \\ = 0.076 \pm 0.081$$

Cf.
$$A_{EB}^{\ell}(SM,NLO) = 0.048 \pm 0.004$$

- Dominant uncertainty is statistical 8
- Result consistent with SM



A_{FR}^{ℓ} combination at CDF

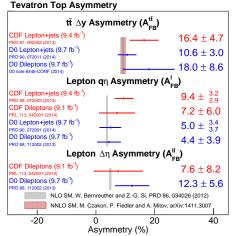
- ullet Combined A_{FB}^ℓ measurements at CDF
- Based on best linear unbiased estimator (BLUE)
- Result is 2σ larger than NLO SM prediction:

$$A_{\mathsf{FB}}^{\ell} = 0.090^{+0.028}_{-0.026}$$

• PRL 113, 042001 (2014) (CDF)

$A_{\rm FB}^{t\bar{t}}$ in dilepton and CDF combination

- Observed large $A_{\rm FB}^{\ell}$ in dilepton as well, continue pursuing $A_{\rm FB}^{t\bar{t}}$ measurement in dilepton
- Then $A_{\mathsf{FR}}^{t\bar{t}}$ combination at CDF

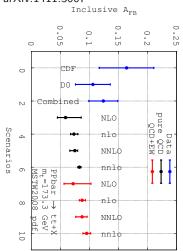

Analysis in progress!

Best-world understanding of top AFB

What is the best-world understanding of top A_{FB} ?

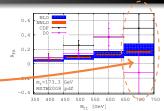
CDF and D0 results

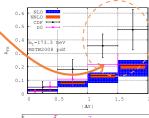
- ullet D0 recently released measurements of A_{FB}^ℓ , $A_{\mathsf{FB}}^{\ell\ell}$ and $A_{\mathsf{FB}}^{tar{t}}$
 - Results from D0 consistent with both CDF and NLO SM
 - All results higher than NLO (and NNLO) SM predictions

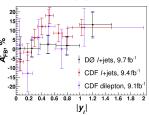


NNLO AFR Prediction

- Very recently, preliminary NNLO prediction suggests tension resolved
- NNLO QCD + LO EW $ightarrow A_{\mathsf{FB}}^{t\bar{t}} = 9.5 \pm 0.7\%$
- Deviation between measurements and prediction no longer significant


NNLO QCD calculation needed for top kinematics! Especially important for precision measurements happening at LHC M. Czakon, P. Fiedler and A. Mitov

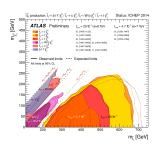

arXiv:1411.3007



Prospects for a final Tevatron combin

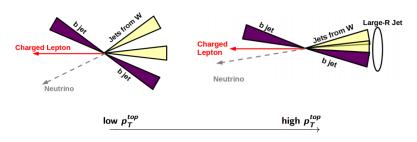
- Differential A_{FB} show mostly good agreement between CDF and D0
 - Some areas under study
 - This might account for the differences
- Both experiments working to understand the differences
 - Are the two experiments measuring the same observables?
 - Different techniques causing bias in either/both experiments?
 - Statistical fluctuation?
- Plan: understand the difference and make Tevatron combinations of $A_{\rm FB}^{\ell}$, $A_{\rm FB}^{\ell\ell}$ and $A_{\rm FB}^{t\bar{t}}$

Conclusions: Top A_{FB}

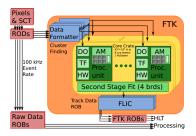

- ullet The A_{FB} of top-pairs at the Tevatron remains a story does not yet hang together well, but at long last may be resolved
- Measurements of $A_{\rm FB}^{t\bar{t}}$, $A_{\rm FB}^{\ell}$ and $A_{\rm FB}^{\ell\ell}$ provide complementary handles to probe the production and decay of $t\bar{t}$
- $A_{\rm FB}^{\ell}$ at CDF shows 2σ deviation from NLO SM, but may be consistent with NNLO. Only time will tell.
- Measurement of A_{FB}^{tt} in dilepton in progress
- Working on understanding the difference between CDF and D0 measurements
- Full NNLO SM calculation on the horizon
- Either way it has been an exciting chase for new physics

ATLAS at LHC Run 2

- Next show my research interests on ATLAS at LHC Run 2
- Haven't been involved in ATLAS analysis, so these ideas are preliminary
 - Eager to refine to more realistic ideas with helps from experts
- Want to get involved with both hardware projects and physics analyses
 - Search for SUSY or anything beyond the SM
 - FTK electronics
 - Computing


ATLAS at LHC Run 2 Analyses

- SUSY provides plausible solutions to hierarchy problem and perfect dark matter candidates
- Involved in GMSB search with delayed photons at CDF
- Want to keep hunting for SUSY search at LHC Run 2
- stop?
- Heavy second Higgs \rightarrow hh \rightarrow WWbb?
- Preferably with scenarios where I can take advantage of my knowledge of tops, but would be interested in ANY promising scenario


ATLAS at LHC Run 2 Top Tagger

- With increasing energy, top quark is becoming more boosted
 - Merging into a jet with substructure
- Together with mini-isolated lepton, this provides a novel channel for top physics
 - ullet Especially in searching for heavy resonances decaying to $tar{t}$

ATLAS at LHC Run 2 Hardware

- Joined CDF after Tevatron shut down
 - Eager to learn more about hardware
- Especially interested in detector electronics
- FTK trigger is critical to LHC Run 2 and beyond
- Want to join this effort to both complete my training and improve future physics analyses

ATLAS at LHC Run 2 Computing

- Have extensive experience in utilizing computing clusters
- Our group runs a CMS Tier 3 computing center
 - Have direct experience in maintaining computing clusters
- Would like to keep employing big computing techniques

Thanks!

Backup Slides

Backup slides

$tar{t} ightarrow ext{dilepton}$ event selection criteria

Exactly two leptons with $E_T > 20~{ m GeV}$ and passing standard identification requirements with			
following modifications			

-COT radius exit > 140 cm for CMIO

 $-\chi^2/ndf < 2.3$ for muon tracks

At least one trigger lepton

A+ |---+ --- +:-|-+ --- | :--|-+--| |-

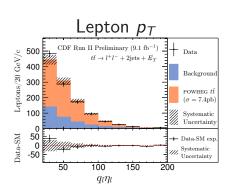
At least one tight and isolated lepton

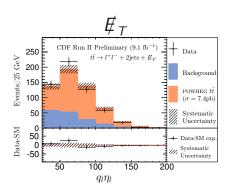
At most one lepton can be loose and/or non-isolated

MetSig (= $\frac{E_T}{\sqrt{E_T^{um}}}$) > 4 $\sqrt{\rm GeV}$ for ee and $\mu\mu$ events where 76 $\rm GeV/c^2 < m_{ll} < 106~GeV/c^2$

 $m_{ll} > 10 \text{ GeV/c}^2$

Two or more jets with $E_{\mathrm{T}} > 15~\mathrm{GeV}$ within $|\eta| < 2.5$


 $H_T > 200 \text{ GeV}$


Opposite sign of two leptons

Saseline Cuts

Signal

$t \overline{t} ightarrow ext{dilepton}$ Signal and background modeling Validation

Agreement is excellent

Systematic uncertainty of A_{FB}^ℓ measurement

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)				
Source of Uncertainty	nty Value			
(A_{FB}^ℓ)				
Backgrounds	0.029			
Asymmetric Modeling	0.006			
Jet Energy Scale	0.004			
Symmetric Modeling	0.001			
Total Systematic	0.030			
Statistical	0.052			
Total Uncertainty	0.060			

Systematic uncertainty of $A_{\mathsf{FB}}^{\ell\ell}$ measurement

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)				
Source of Uncertainty	Value			
$(A_{\sf FB}^{\ell\ell})$	value			
Backgrounds	0.037			
Asymmetric Modeling	0.012			
Jet Energy Scale	0.003			
Symmetric Modeling	0.004			
Total Systematic	0.039			
Statistical	0.072			
Total Uncertainty	0.082			

Comparison of A_{FB}^{ℓ} among SM prediction and measurements at CDF and D0.

Source	A_{FB}^ℓ	Description	Reference	
Calculation	0.038±0.003	NLO SM	PRD 86 ,034026 (2012)	
	$0.094^{+0.032}_{-0.029}$	Lepton+jets	PRD 88 ,072003 (2013)	
CDF	0.072 ± 0.060	Dilepton	PRL 113 ,042001 (2014)	
	$0.090^{+0.028}_{-0.026} \\$	Combination		
D0	$0.042^{+0.029}_{-0.030}$	Lepton+jets, $ q_\ell \eta_\ell < 1.5$	arXiv:1403.1294	
DU	0.044 ± 0.039	Dilepton	PRD 88 ,112002 (2013)	
	0.047 ± 0.027	Combination	arXiv:1403.1294	

A_{FB}^{ℓ} CDF combination

CDF Run II Preliminary

Source of uncertainty	$L+J (9.4fb^{-1})$	DIL (9.1fb^{-1})	Correlation
Backgrounds	0.015	0.029	0
Recoil modeling (Asymmetric modeling)	$+0.013 \\ -0.000$	0.006	1
Symmetric modeling	-	0.001	
Color reconnection	0.0067	-	
Parton showering	0.0027	-	
PDF	0.0025	-	
$_{ m JES}$	0.0022	0.004	1
IFSR	0.0018	-	
Total systematic	$+0.022 \\ -0.017$	0.030	
Statistics	0.024	0.052	0
Total uncertainty	$+0.032 \\ -0.029$	0.060	

$$\begin{split} M_{l^{+}\nu}^{2} &= (E_{l^{+}} + E_{\nu})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu})^{2} = M_{W}^{2} \\ M_{l^{-}\bar{\nu}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}})^{2} = M_{W}^{2} \\ M_{l^{+}\nu b}^{2} &= (E_{l^{+}} + E_{\nu} + E_{b})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu} + \vec{p}_{b})^{2} = M_{t}^{2} \\ M_{l^{-}\bar{\nu}\bar{b}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}} + E_{\bar{b}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}} + \vec{p}_{\bar{b}})^{2} = M_{t}^{2} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{x} &= (\not E_{T})_{x} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{y} &= (\not E_{T})_{y} \end{split}$$

ДŘ

$$\begin{split} \mathcal{L}(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_b, E_{\bar{b}}) = & P(p_z^{t\bar{t}}) P(p_T^{t\bar{t}}) P(M^{t\bar{t}}) \times \\ & \frac{1}{\sigma_{\rm jet1}} \exp\left(-\frac{1}{2} \left(\frac{E_{\rm jet1}^{\rm measure} - E_{\rm jet1}^{\rm fit}}{\sigma_{\rm jet1}}\right)\right) \times \frac{1}{\sigma_{\rm jet2}} \exp\left(-\frac{1}{2} \left(\frac{E_{\rm jet2}^{\rm measure} - E_{\rm jet2}^{\rm fit}}{\sigma_{\rm jet2}}\right)\right) \\ & \frac{1}{\sigma_x^{\not E_T}} \exp\left(-\frac{1}{2} \left(\frac{\not E_x^{\rm measure} - \not E_x^{\rm fit}}{\sigma_x^{\not E_T}}\right)\right) \times \frac{1}{\sigma_y^{\not E_T}} \exp\left(-\frac{1}{2} \left(\frac{\not E_y^{\rm measure} - \not E_y^{\rm fit}}{\sigma_y^{\not E_T}}\right)\right) \end{split}$$

- The ratio of $A_{\rm FB}^{tt}/A_{\rm FB}^{\ell}$ observed to be consistent when $t\bar{t}$ produced unpolarized and decay like SM
- Based on CDF $A_{\rm FB}^{t\bar{t}}$ result (0.16 \pm 0.05), this yields prediction of 0.070 < $A_{\rm FB}^{\ell}$ < 0.076