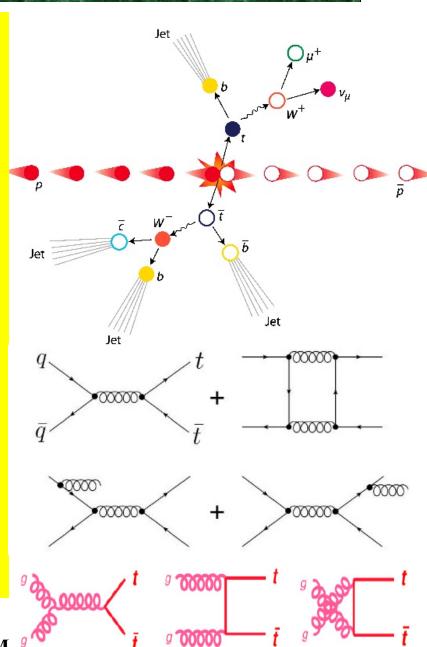


Top Production at the Fermilab Tevatron

David Toback

Texas A&M University
March 2016



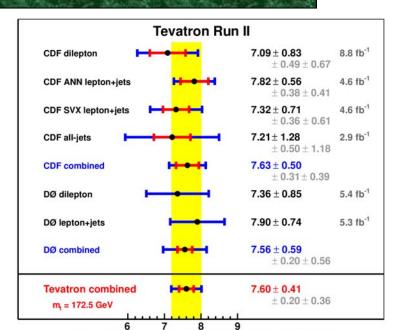
Outline

- Total and Differential Cross Sections
- Angular distributions to determine the amount of Spin Correlation and Polarization
- Legacy result for the Forward-Backward Asymmetry (A_{FB})
- Conclusions

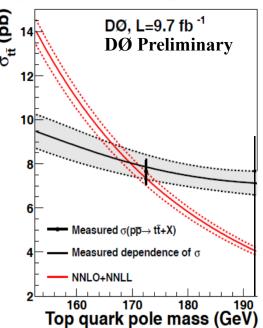
Top Production at the Tevatron

- pp̄ collision
 - Asymmetric initial state
- Dominant process is top quark pair production
 ~85% quark annihilation
 - Important NLO contributions
 - ~15% gluon fusion
- ~70,000 tt produced/expt
 - − ~3,000 reconstructed/expt

Total Cross Section Measurements



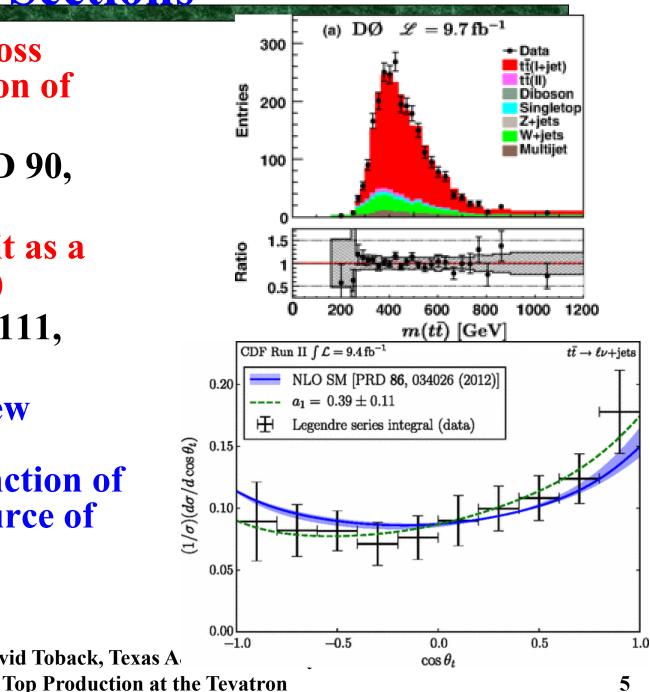
• Tevatron combination:


- $\sigma_{t\bar{t}} = 7.60 \pm 0.41 pb$
- PRD 89, 072001 (2014)
- New result from DZero (Lep+Jets & Dilepton)
 - $\sigma_{t\bar{t}} = 7.73 \pm 0.13$ (stat.) ± 0.55 (syst.) pb,
 - D0 Note 6453-CONF (2015)
- Theory Comparison:
 - Fully resummed NNLO QCD calculation

»
$$\sigma_{t\bar{t}}^{Res} = 7.35^{+0.23}_{-0.27}$$
 (scale + pdf) pb

- » Bernreuther, Czakon and Mitov, PRL 109 132001 (2012)
- aNNNLO
 - » $\sigma_{t\bar{t}}^{Res} = 7.37 \pm 0.39$ (scale+pdf) pb
 - » Kidonakis, PRD 90, 014006 (2014)

 $p\overline{p} \to t\overline{t}$ cross section (pb) at \backslash s=1.96 TeV

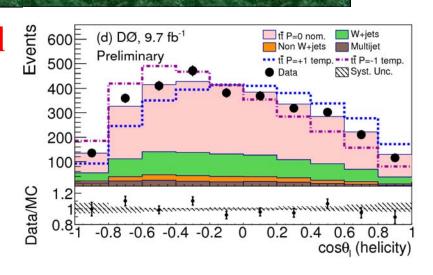


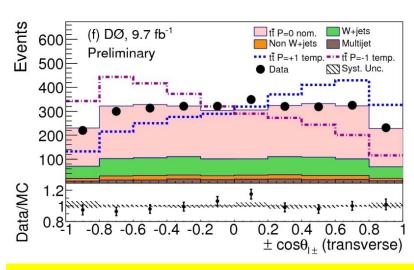
Differential Production Cross

Sections

- Can look at the cross section as a function of $M_{t\bar{t}}$
 - E.g. DZero PRD 90, 092006 (2014)
- Similarly, look at it as a function of $Cos(\theta_t)$
 - E.g. CDF PRL 111, 182002 (2013)
- No evidence for new physics, but the deviations as a function of $Cos(\theta_t)$ are the source of the A_{FR} story

Polarization in tt Events


- Tops are almost un-polarized at the Tevatron
 - Small longitudinal polarization from parity-violating weak interactions
 - Transverse polarization is allowed in strong interactions
 - BSM can make these bigger
- Since the top lifetime (~5x10⁻²⁵ s) is smaller than the spin-decorrelation time from spin-spin interactions (~3x10⁻²¹ s) tops transfer their spin properties to their decay products
- Can measure polarization through the final angular distributions with respect to a chosen axis


$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{i,\hat{n}}} = \frac{1}{2} (1 + P_{\hat{n}} \kappa_i \cos\theta_{i,\hat{n}})$$

Top Quark Polarization Cont.

- After full reconstruction the final angle distributions gives the amount of polarization in three different configurations
- Data are consistent with zero polarization, and with the predicted SM values
- First measurement of polarization along the transverse axis at a hadron collider

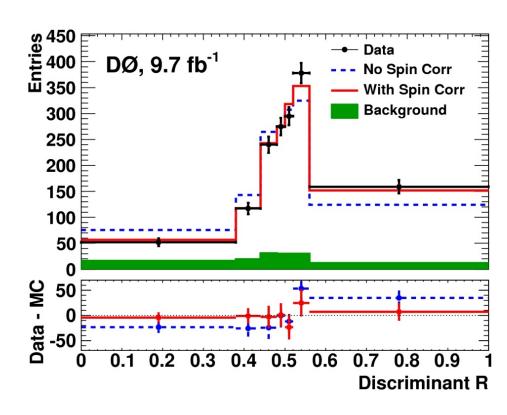
Axis	Measured polarization $P_{\hat{n}}$	SM prediction
Beam	$+0.070 \pm 0.055$	-0.002
Helicity	-0.102 ± 0.060	-0.004
Transverse	$+0.040 \pm 0.034$	+0.011

DZero Conference Note 6471 (2015)

.&M University

Spin Correlations

- While QCD processes yield mostly unpolarized top and anti-top, the spins of the top and anti-top are highly correlated
- Define the Spin Correlation as:


$$O_{ab} = \langle 4(S_t \cdot \hat{a})(S_{\bar{t}} \cdot \hat{b}) \rangle = \frac{\sigma(\uparrow \uparrow) + \sigma(\downarrow \downarrow) - \sigma(\uparrow \downarrow) - \sigma(\downarrow \uparrow)}{\sigma(\uparrow \uparrow) + \sigma(\downarrow \downarrow) + \sigma(\uparrow \downarrow) + \sigma(\downarrow \uparrow)},$$

- $O_{off} = 0.80^{+0.01}_{-0.02}$ predicted in the off-diagonal spin basis (maximal at the Tevatron)
 - $q\overline{q}$ annihilation has a spin correlation strength of ~0.99
 - gluon-gluon fusion has a typical strength of ~-0.36

Spin Correlation Data

- Create an event-by-event discriminant for the probability "With Spin Correlations" and for "No Spin Correlations"
- Fit the data allowing the total cross section and the fraction of "With Spin Correlations" to float

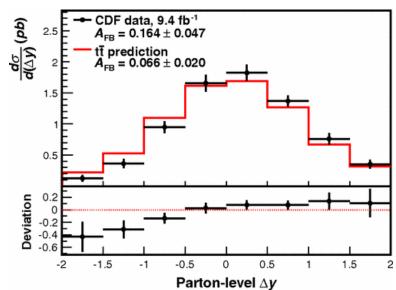
Dzero
arXiv:1512.08818,
Submitted to PLB

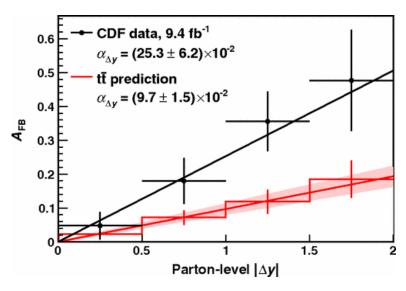
David Toback, Texas A&

Spin Correlation Conclusion

Results:

- $O_{off} = 0.89 \pm 0.16 \text{ (stat)} \pm 0.15 \text{ (syst)}$
- Exclude the Uncorrelated scenario
 - P-value is 2.5×10^{-5} for obtaining a spin correlation larger than the observed value (4.2σ)
- Assuming no BSM contributions, constrain the fraction of events from gluon fusion to $f_{gg}{=}0.08{\pm}12(stat) \pm 0.11(sys) \text{ which is in agreement with the NLO prediction of 0.135}$

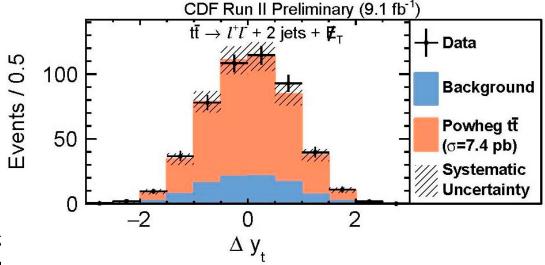

Last of the A_{FB} Measurements in $t\bar{t}$ at the Tevatron


- The forward-backward asymmetry has been a hot topic since a larger-than-expected asymmetry was observed in 2012
- Not just the total asymmetry, but the asymmetry as a function of Δy and as a function of $M_{t\bar{t}}$ were larger as well
- Original results from CDF in Lep+Jets:

$$- A_{FB} = 0.164 \pm 0.047$$

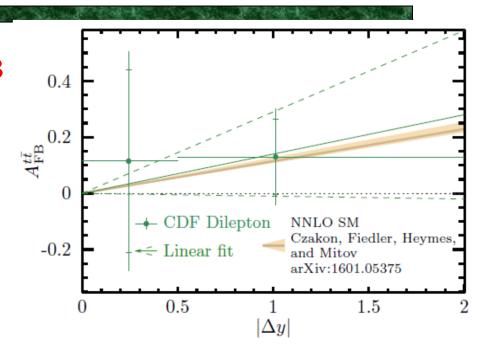
-
$$Slope_{\Delta Y} = 0.253 \pm 0.062$$

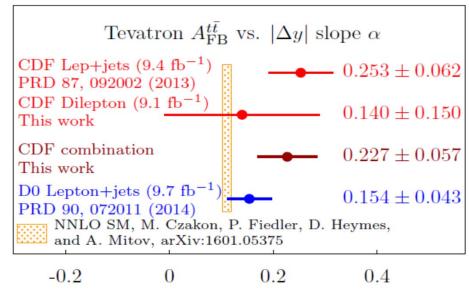
- PRD 87, 092002 (2012)
- Note large change in SM predictions:
 - $A_{FB} (NNLO SM) = 0.095 \pm 0.007$
 - Czakon, Fiedler & Mitov,
 PRL 115, 052001 (2015)
 - Slope_{AY} (NNLO)= 0.114 $^{+0.006}_{-0.012}$
 - Czakon, Fiedler, Heimes & Mitov, arXiv:1601.05375



New A_{FB} Results from CDF

- Results with dilepton data:
 - $-A_{FR} = 0.12\pm0.11(stat)\pm0.07(syst) = 0.12\pm0.13$
- Combined with CDF result in lepton+jets
 - $-A_{FR} = 0.160 \pm 0.045$
- Consistent with SM and DZero
 - $-A_{FB}$ (NNLO SM) = 0.095±0.007 within 1.5 σ
 - $-A_{FR} = 0.118 \pm 0.028$ DZero, PRD 92 052007 (2015)


CDF arXiv: 1602.09015, Submitted to PRD

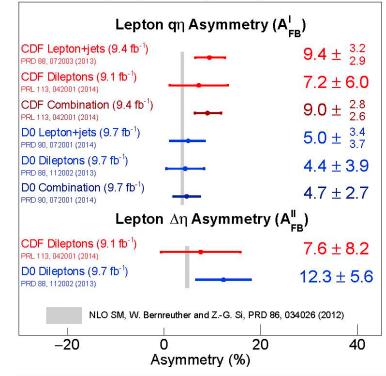


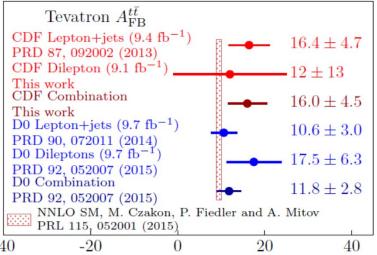
Look at Differential Distributions

- Measure the slope of A_{FB} vs. $|\Delta y|$
 - Slope_{ΔY} = 0.14± 0.16
- Combine with Lep+Jets results
 - Slope_{AV} = 0.227± 0.057
 - -2.0σ from NNLO SM
 - Not enough statistics to make a meaningful slope vs. $M_{t\bar{t}}$ measurement
- Again consistent between CDF and DZero

David Toback, Texas A (b) α **Top Production at t...**

 α (asymmetry per unit rapidity)




Legacy A_{FR} Tevatron Results

- Final individual results on A_{FB} from Tevatron
- All the results, including from DZero, are consistent with SM predictions
- Notice that all of them are above...
- A combination of CDF+DZero results is in the works

Tevatron Top Leptonic Asymmetry

Asymmetry (%)

Conclusions

- Top production at the Tevatron has yielded a wealth of important information about the heaviest known fundamental particle
- While many of the distributions have shown to be similar to SM predictions, the measured precisions have pushed well beyond LO, to NLO and NLO+
- Indeed, many of the corrections have been larger than expected, and appear to have been the cause of some of exciting hunts for new physics while we figured it out
- The legacy results from the Tevatron are nearing completion, bringing this long, wonderful story to a close