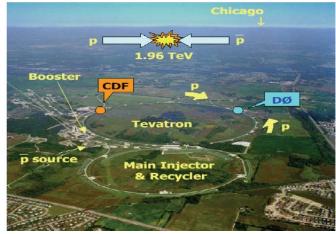


Top-Quark Measurements at CDF with the Full Run II Data Sample

David Toback

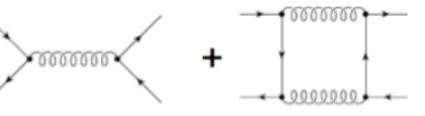
Texas A&M University


For the CDF Collaboration

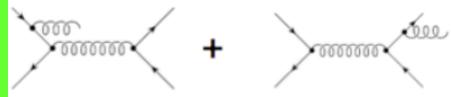
CIPANP, June 2012

Top Quark and the Tevatron

- Top is the heaviest known particle
 - Mass ≈172.5 GeV/c²
- · Fermilab Tevatron
 - Sqrt(s)=1.96 TeV
 - Just completed data taking phase
 - Collected 8.7 fb⁻¹ of data useful for these analyses
 - -Top-pair cross section ≈7.5 pb
 - -Single top cross section ≈3.1 pb
- · Show some of the results from the full (or nearly full) Run II Data sample


Outline: Mass, Properties and Cross Sections

- Top Properties
 - Forward-Backward Asymmetry: A_{FB}
 - Ratio of Branching Ratios: $\frac{Br(t
 ightarrow Wb)}{Br(t
 ightarrow Wq)}$ and $|V_{tb}|$
 - Single Top: Cross sections and $|V_{tb}|$
 - W-Helicity in Top Decays
- Top Mass
 - M_{top} in Lepton+Jets
 - Top-antitop Mass Difference
 - M_{top} in Met+Jets
- Conclusions


A_{FB} in the Standard Model

- Standard Model has no Forward-Backward asymmetry for top pair production at LO
- NLO has interference terms that give a small asymmetry
- Some uncertainty regarding theory predictions
 - Use POWHEG central value and a 26% correction for EWK contributions

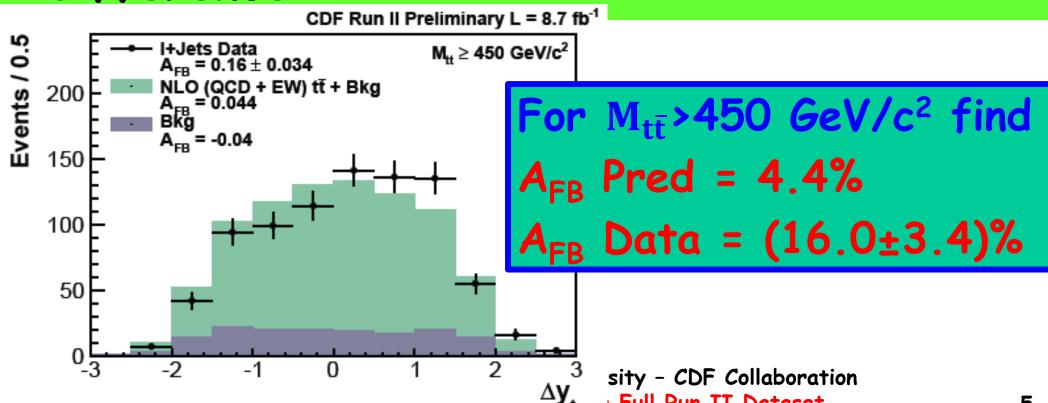
Born + Box Interference Positive Contribution to A_{FB}

ISR/FSR Interference Negative Contribution to A_{FB}

$$A_{FB}^{NLO} = 6.6\%$$

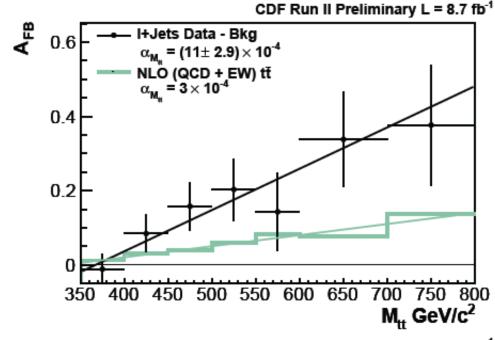
POWHEG: JHEP **0709**, 126 (2007)

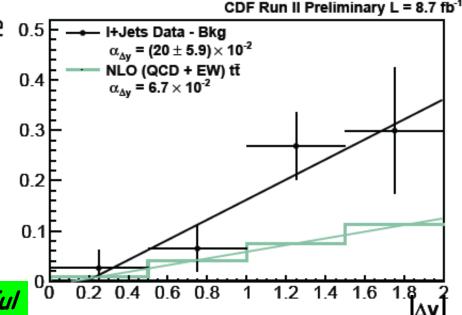
EW Corrections: Phys. Rev. D 84, 093003 (2011); JHEP 1201, 063 (2012); arXiv:1201.3926[hep-ph]


CDF Public Notes

- CDFNote 10774: Lepton+Jets
- CDFNote 10807: Differential Measurements

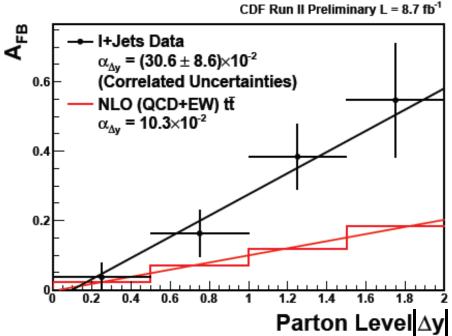
David Toback, Texas A&M University
Top Quark Properties with the Fi

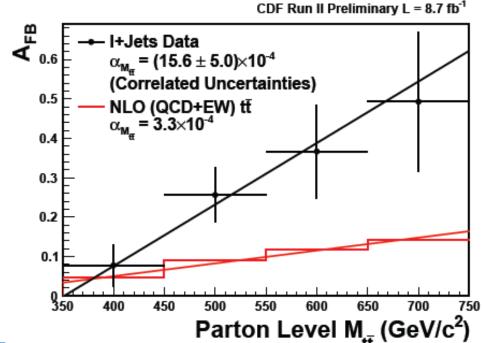

A_{FB} in Lepton+Jets Events


- Have measured an A_{FB} that is 3σ from zero and larger than SM predictions
- A_{FB} Depends on Mass of the $t\bar{t}$ system
- A_{FB} Depends on the top rapidity difference

Asymmetry vs. M_{tt} and $|\Delta Y|$

- · With the full dataset we can look at the differential A_{FB} as a function of $M_{t\bar{t}}$ and $|\Delta Y|$ after background subtraction
- SM predicts both to be roughly linear
 - Observe a linear dependence in the data
 - Slopes are 30 from zero and inconsistent with SM predicted slopes
 - p-values less than 1% from SM

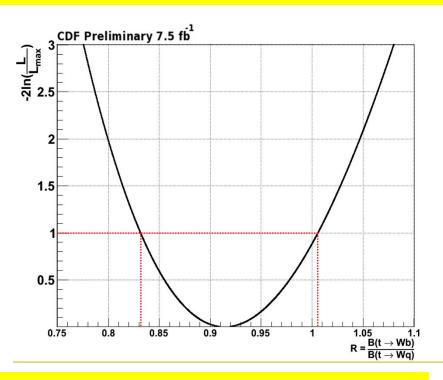


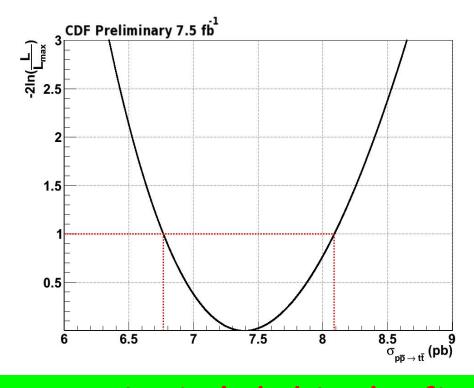

Can the numerical values of these slopes be useful to model builders?

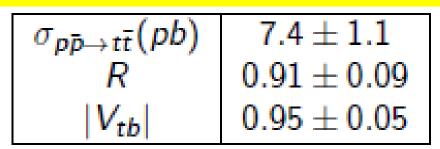
Asymmetries at the Parton Level

Can unfold data to get back to the parton level to get to a "true" $A_{\rm FB}$

slope parameter α	A_{FB} vs $M_{t\bar{t}}$	A_{FB} vs Δy
DATA	$(15.6 \pm 5.0) \times 10^{-4}$	$(30.6 \pm 8.6) \times 10^{-2}$
SM	3.3×10^{-4}	$10.3 imes 10^{-2}$ \wedge

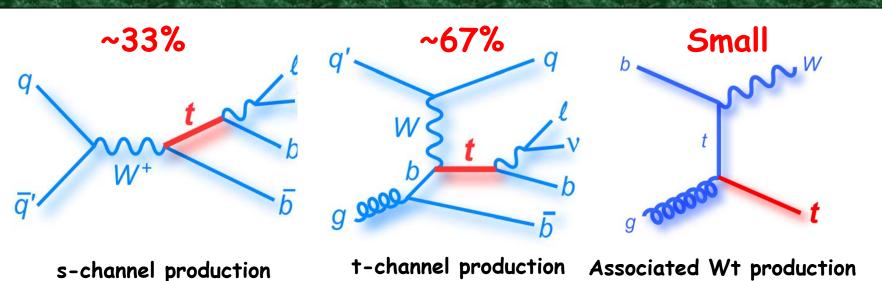

Again, linear relationships with slopes that are 3σ from zero and inconsistent with SM predicted slopes


Ratio of Branching Ratios


$$R = \frac{Br(t \to Wb)}{Br(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

- SM: R = 1 constrained by CKM unitarity. R < 1 could indicate new physics
- · Drop R=1 assumption and Measure R simultaneously with the $t\bar{t}$ cross section
- Expect 2 b's in each $t\bar{t}$ event if BR($t\rightarrow$ Wb)=100%
 - Tagging efficiency determines number of Lepton+Jets events with 0, 1, or 2 tagged jets in 3, 4 or ≥5 Jet samples
- Derive |V_{tb}| from result (assuming a unitary 3×3 CKM matrix)

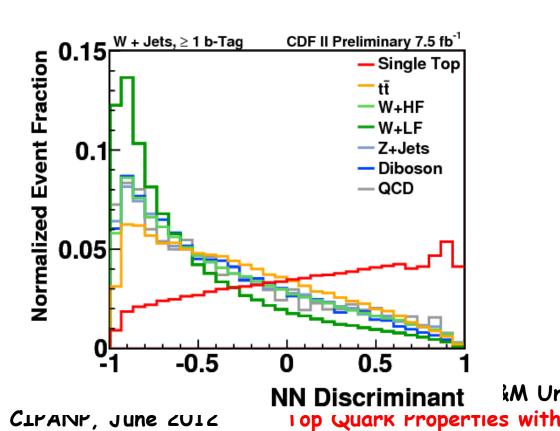
Top Cross Section, Branching Fraction and $|V_{tb}|$

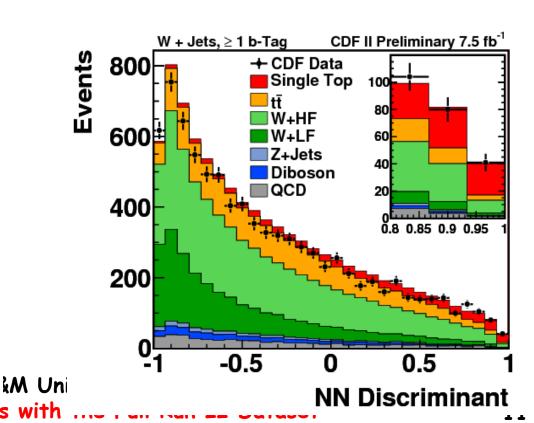


Systematics included in the fit:

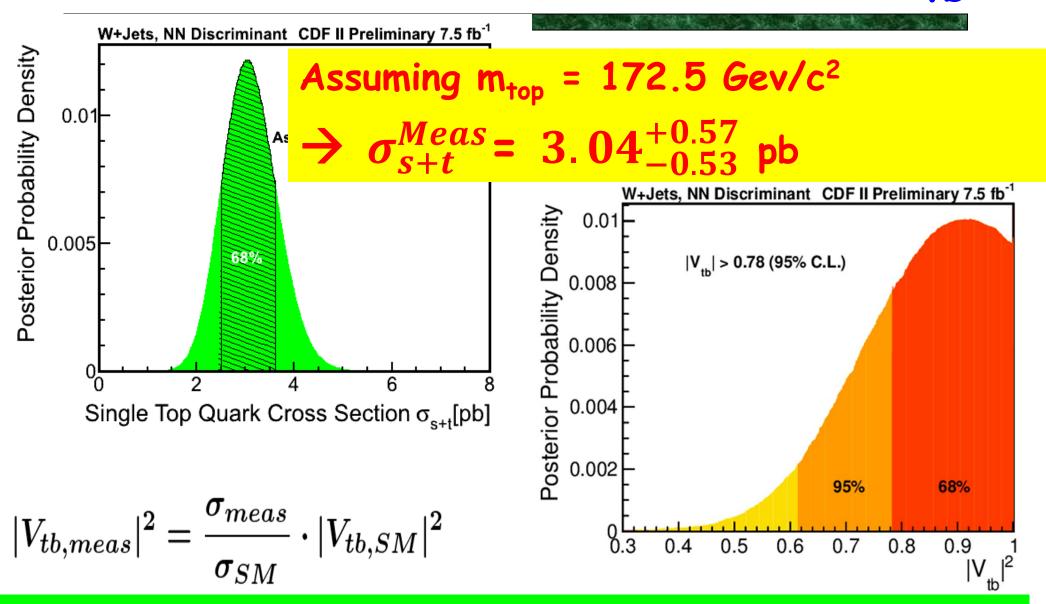
- Tag efficiency
- Selection efficiency
- Background normalization
- Luminosity

Single Top Quark Production

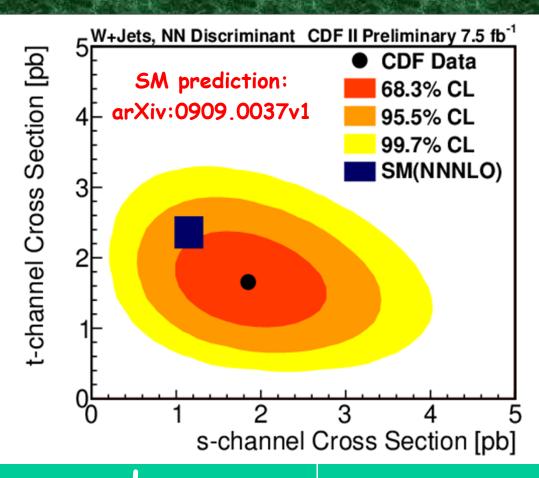

- t-channel production
- Associated Wt production


Motivation:

- Measure σ_{s+t} as well as σ_{s-and} σ_{t} simultaneously
- Gives a measure of $|V_{th}|$
- Sensitive to New Physics (FCNC, W'...) and **CP** violation CDF Public Note 10793

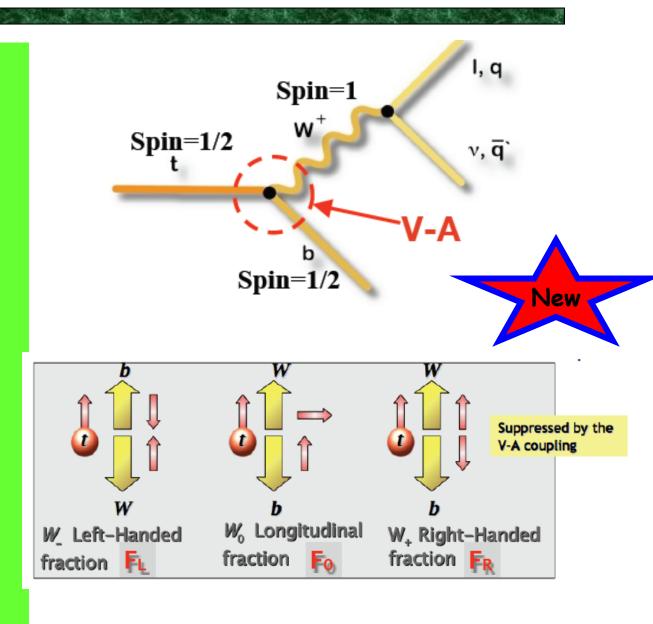

Data and Neural Net Analysis

- Large backgrounds in the Lepton+Jets+Met with a b-tag
- Use Neural Nets for s and t-channel separately and to separate the different signals from backgrounds



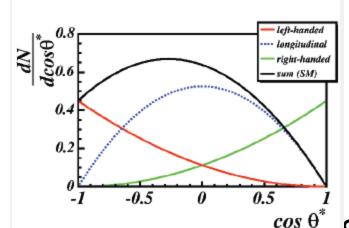
Total Cross Section and $|V_{tb}|$

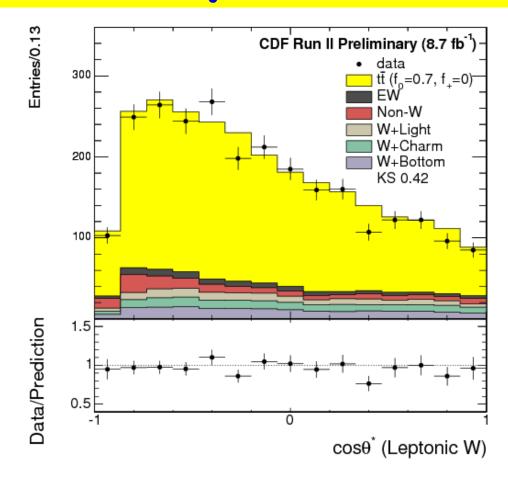
Set limit: $|V_{tb}| > 0.78$ at 95% CL Extracted $|V_{tb}| = 0.92^{+0.10}_{-0.08}$ (stat.+sys.) ± 0.05(theory)


Simultaneous σ_t and σ_s Measurement

Measured Cross Section SM Prediction $\sigma_s = 1.81^{+0.63}_{-0.58} \, \text{pb}$ $\sigma_s = 1.05 \pm 0.07 \, \text{pb}$ $\sigma_t = 1.49^{+0.47}_{-0.42} \, \text{pb}$ $\sigma_t = 2.10 \pm 0.19 \, \text{pb}$ $\sigma_{wt} = 0.22 \pm 0.08 \, \text{pb}$

W Helicity in Top Quark Decays

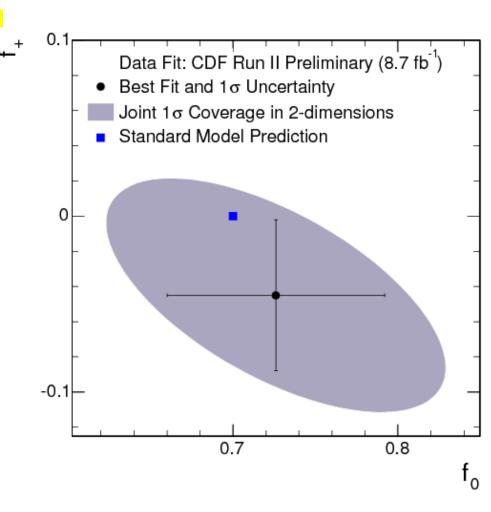

- Since the top decays as a bare quark it's spin information is transferred into it's final state
- Sensitive to non-SM tWb couplings



Simultaneous Measurement of the Longitudinal and Right-Handed Helicity

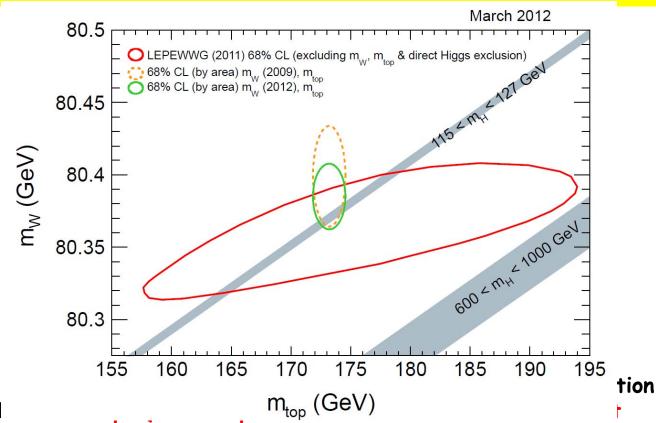
Use Matrix Element Techniques in Lepton+Jets events

Consider $Cos\theta^*$ which is the angle between the lepton in the W rest frame and the momentum of the W in the top quark rest frame

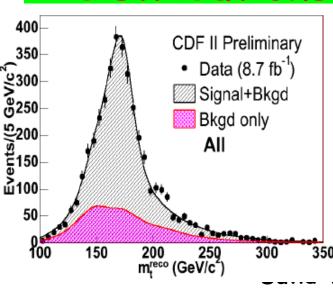


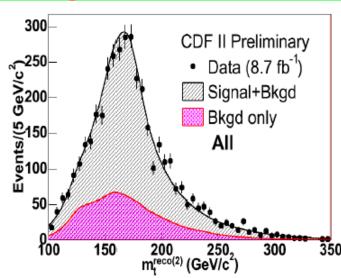
ack, Texas A&M University - CDF Collaboration

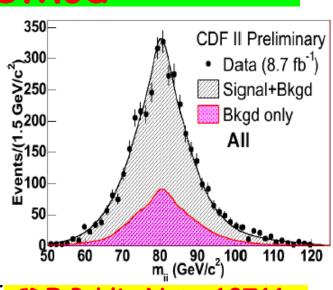
W Helicity in Top Decays


Report both the uncertainties on each value as well as the joint coverage in 2-dim

Parameter	Measured Value	Standard Model Value
Longitudinal (fix f₊=0)	$f_0 = (72.6 \pm 6.6(stat) \pm 6.7(sys))\%$	$f_0 = 69.6\%$
Right-Handed (fix f ₀ =0.7)	$f_{+} = (-2.5 \pm 2.4(stat) \pm 4.0 (sys))\%$	$f_+=0.1\%$

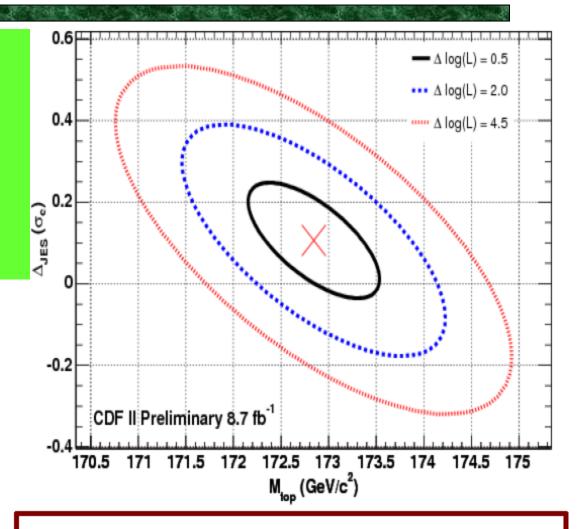

Top Quark Mass


- The top quark mass is a fundamental parameter of the Standard Model
- Affects predictions via radiative corrections
- When combined with the W mass places important constraints on the Higgs Mass



Top Mass: Lepton+Jets

- Template methods with a kernel density estimator
- Reconstruct the likelihood as a product of per-event probabilities in the 0-tag, 1 tag and 2-tag samples
- Model both right and "wrong" combination distributions as part of the method

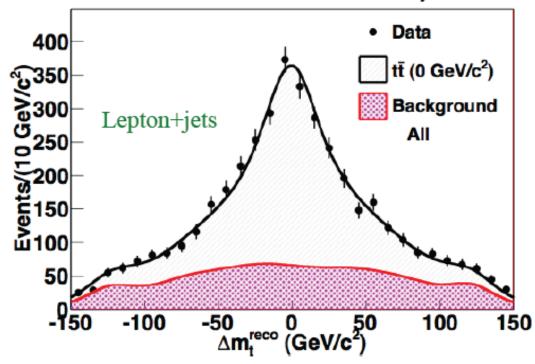

Top Mass: Lepton+Jets

The dominant systematic is the Jet Energy Scale include it directly

Statistical Uncertainty now better than systematic uncertainty

CDF II Preliminary 8.7 fb⁻¹

Systematic	${ m GeV/c^2}$
Residual JES	0.52
Generator	0.56
Next Leading Order	0.09
PDFs	0.08
b jet energy	0.10
b tagging efficiency	0.03
Background shape	0.20
gg fraction	0.03
Radiation	0.06
MC statistics	0.05
Lepton energy	0.03
MHI	0.07
Color Reconnection	0.21
Total systematic	0.84

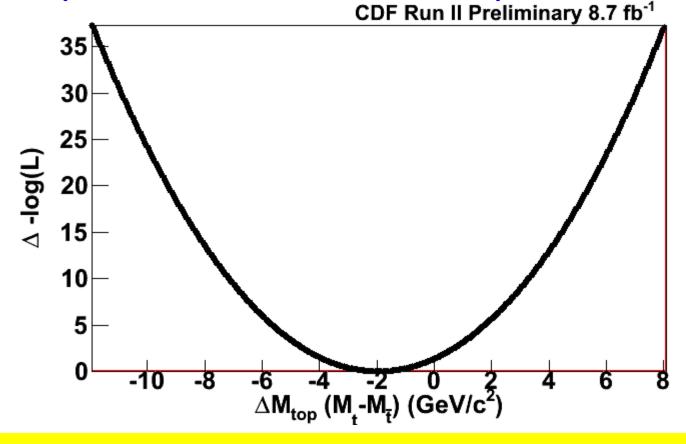

 172.85 ± 0.71 (stat) ± 0.84 (syst) GeV 172.85 ± 1.10 GeV (precision: 0.6%)

Most sensitive single method of measuring to mass

- Look for a difference between the measured top mass and the antitop mass
- Powerful test of CPT violation
- · Use the same procedure as in the previous top quark mass measurement where we assumed $M_{top} = M_{antitop}$, but remove this requirement and allow both to float independently in the fitting

Top quark only quark that decays before hadronizing, giving the possibility for a clean test

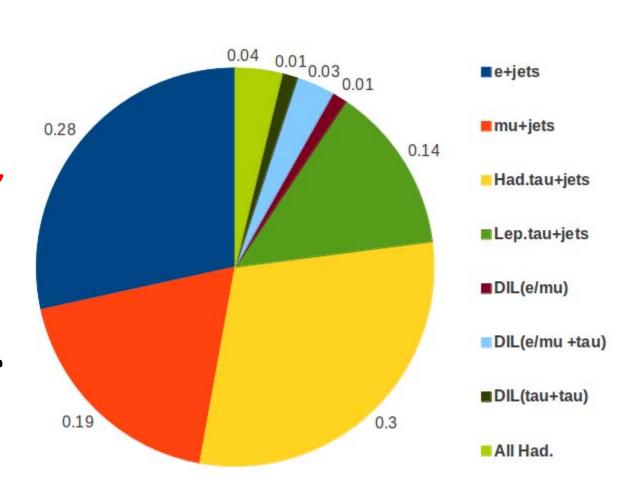
CDF Public Note 10777


1&M University – CDF Collaboration

Many Jet Energy systematics uncertainties cancel Result dominated by Statistical Uncertainty

CDF II Preliminary 8.7 fb⁻¹

CDI II I Telliminary	0.1 10
Systematic	GeV/c^2
Signal Modeling	0.14
Parton Showering	0.17
Next Leading Order	0.16
Jet energy scale	0.07
Parton Distribution Functions	0.12
b jet energy	0.05
b/\bar{b} asymmetry	0.38
Background shape	0.20
gg fraction	0.05
Radiation	0.10
MC statistics	0.07
Lepton energy	0.06
MHI	0.05
Color Reconnection	0.23
Total systematic	0.59



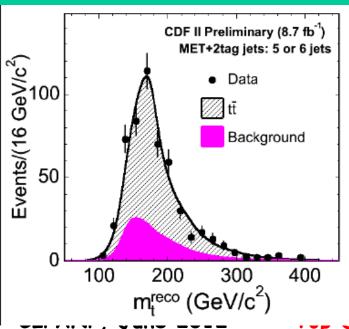
$$\Delta M_{top} = -1.95 \pm 1.11 \text{ (stat)} \pm 0.59 \text{ (sys)} \text{ GeV/c}^2$$

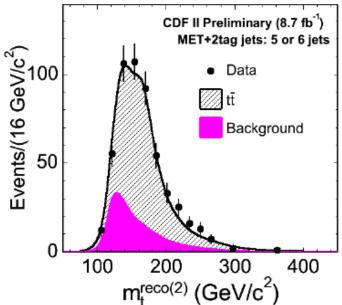
= -1.95 \pm 1.26 \text{ GeV/c}^2

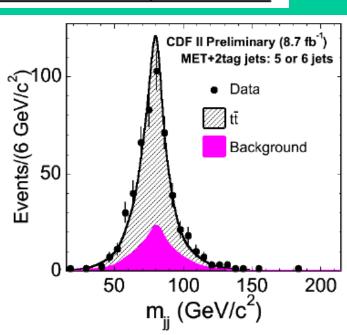
Top Mass: Met+Jets-

New

- While many measurements of top pairs have come in the lepton+Jets, dilepton, and all-hadronic modes, many more $t\bar{t}$ events show up in our data
- · Identify many of them using a "catch-all" analysis which looks for events with Met+Jets where one or more of the jets is b-tagged
- Many are from lost leptons or hadronic tau decays

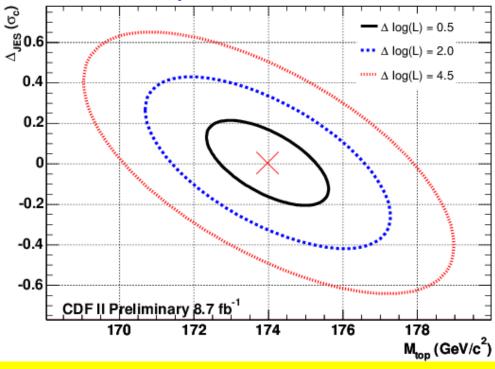

CDF Public Note 10810


Top Mass: Met+Jets


- Pick up more than 1,500 top candidate events
- Fairly clean sample
- · Allows for a strong mass measurement

CDF II Preliminary 8.7 fb) ⁻¹
---------------------------	-----------------

b-tagging	jet-multiplicity	$t ar{t}$	Background	Total Expected	Observed
1tog	4 jets	427 ± 50	262 ± 22	690 ± 55	761
1 tag	5 or 6 jets	801 ± 70	450 ± 29	1251 ± 76	1341
2tog	4 jets	179 ± 23	43 ± 11	222 ± 26	225
2tag	5 or 6 jets	373 ± 37	125 ± 23	498 ± 44	550



Top Mass: Met+Jets

- Use many of the same techniques as the Lepton+Jets measurement
- Systematics dominated by the jet energy scale, overall measurement dominated by statistics

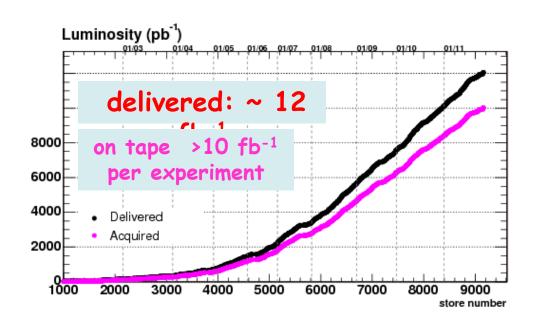
CDF II Preliminary 8.7 fb^{-1}		
Systematic (GeV/c^2)	ΔM_{top}	
Residual JES	0.44	
Generator	0.36	
PDFs	0.16	
b jet energy	0.19	
Background	0.15	
gg fraction	0.27	
Radiation	0.28	
Trigger simulation	0.13	
Multiple Hadron Interaction	0.18	
Color Reconnection	0.28	
Calibration	0.21	
Total Effect	0.87	

$$M_{top}$$
 = 173.9 ± 1.6(stat.+JES) ± 0.9(syst.) GeV/c²
= 173.9 ± 1.9 GeV/c²

Conclusions

- Measurements of the top quark continue to be a priority for the community
 - A_{FB} different than the SM predictions in interesting ways
- The Tevatron legacy measurements continue to be some of the most precise results in the world
 - Individual mass measurements approaching 1 GeV each
- Many new results including $A_{\rm FB}$, mass and cross sections in the dilepton final state coming soon

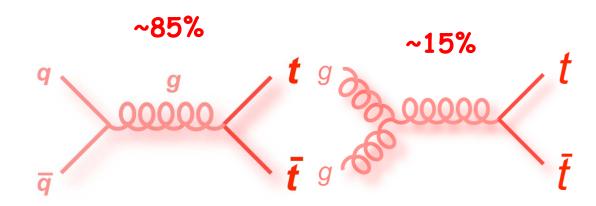
It's an exciting time as we move from the data taking phase to the analysis-only phase at the Tevatron


– CDF Collaboration

Backups

Abstract

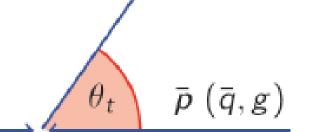
The top-quark, discovered at the Tevatron almost two decades ago, is the heaviest elementary particle known today. Its large mass and short life time make it an ideal probe for studies of the standard model and searches for new physics. These are still intensively pursued with the full CDF Run II data sample. We present recent high-precision measurements of the forward-backward asymmetry in top pair production; of cross sections for top pair production differential in the production angle; of the single top production cross section in the s- and t-channel separately; of the top mass and of the mass difference between the top and anti-top quarks; of the top decay branching ratio into a W boson and a bottom quark; and of the helicity states of the W boson in top pair decays.


Basic Top Stuff

Results shown in the following based on datasets up to 8.7 fb⁻¹

• QCD pair production $\sigma_{SM} = 7.46^{+0.48}_{-0.67} \text{ pb}$

(for
$$m_{Top} = 172.5 GeV$$
)

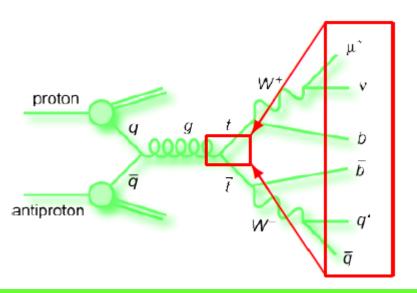


PRD 78, 034003 (2008)

David Toback, Texas A&M University - CDF Collaboration
Top Quark Properties with the Full Run II Dataset

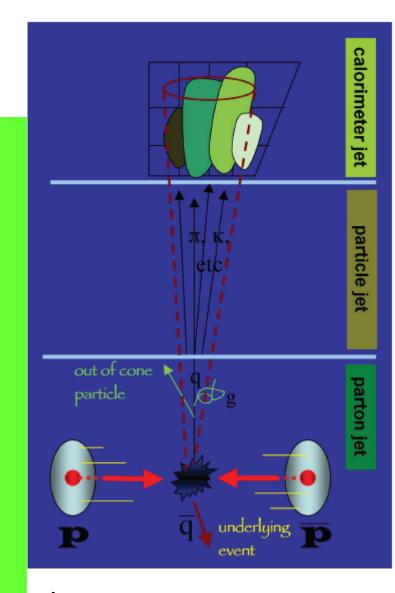
What are A_{FB} and ΔY ?

In proton-antiproton collisions can measure the forward-backward asymmetry (A_{FB}) in the production angle p(q,g)

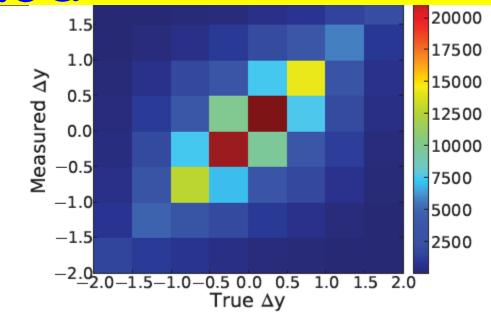

Transform from Θ_t to <u>rapidity</u> (y) Invariant under longitudinal boosts

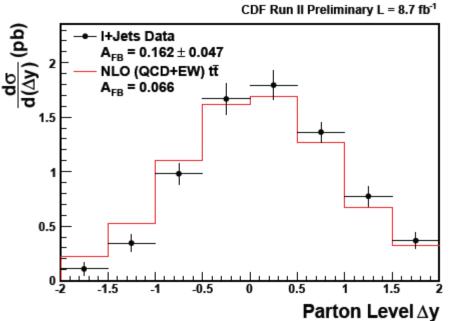
Rapidity difference is a good proxy, for production angle

$$A_{\mathsf{FB}} \equiv rac{\mathcal{N}(\Delta y > 0) - \mathcal{N}(\Delta y < 0)}{\mathcal{N}(\Delta y > 0) + \mathcal{N}(\Delta y < 0)}$$

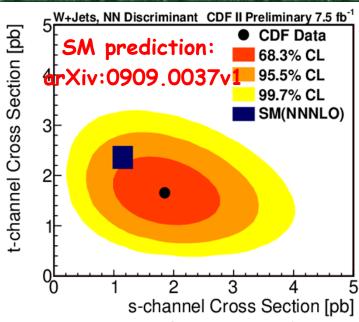

Measure
$$\Delta y = y_t - y_{\bar{t}}$$
, where $y = \frac{1}{2} ln(\frac{E + p_z}{E - p_z})$

Note: y doesn't have the usual geometric angle many of us are used to. At hadron colliders we usually use pseudo-rapidity which assumes m=0 \rightarrow Here E and p not close to equal because of the top mass


Working our back to Parton Level A_{FB}


- · Correct for
 - Finite Detector resolution
 - Smearing from incorrect reconstruction
 - Selection Cuts
 - Geometry
 - Trigger
 - Statistics
- Acceptance correction bin-by-bin of MC truth before and after selection

A Full Correction Matrix Method


- Estimate detector response matrix S from Monte Carlo
- Linear equation for corrected data \vec{x} from data \vec{b} : $S\vec{x} = \vec{b}$
- Inverse problem is ill-conditioned
- Can only be solved in least squares sense (min $\left| S\vec{x} \vec{b} \right|^2$)
- Even then, solution grossly magnifies statistical imprecision
- Use technique from math. stats.: Tikhonov regularization (Höcker and Kartvelishvili 1995)
- Expect true parton level distribution to be smooth
 - Many sources of systematic uncerta

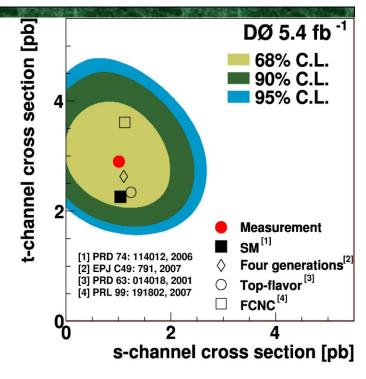
Statistical uncertainty dominates systematic uncertainty

Single Top Stuff

Measured cross section:

•
$$\sigma_s = 1.81^{+0.63}_{-0.58} \text{ pb}$$

•
$$\sigma_t = 1.49^{+0.47}_{-0.42} \, \text{pb}$$


SM Prediction:

•
$$\sigma_s^{SM} = 1.05 \pm 0.07 \text{ pb}$$

•
$$\sigma_t^{SM} = 2.10 \pm 0.19 \text{ pb}$$

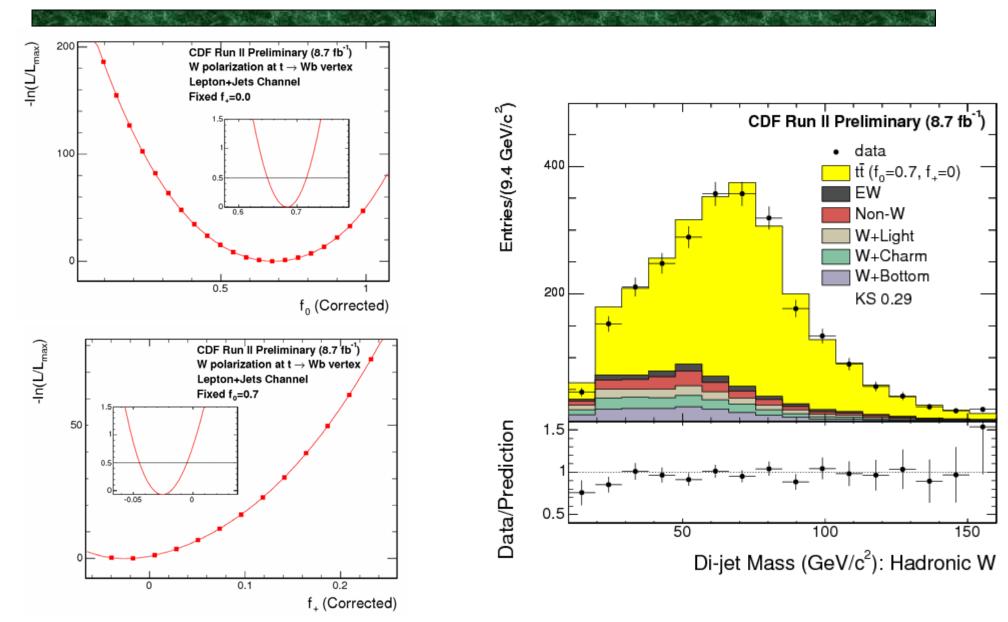
•
$$\sigma_{wt}^{SM} = 0.22 \pm 0.08 \ pb$$
 (Effect negligible)

Measured cross section:

•
$$\sigma_s = 0.98 \pm 0.63 \text{ pb}$$

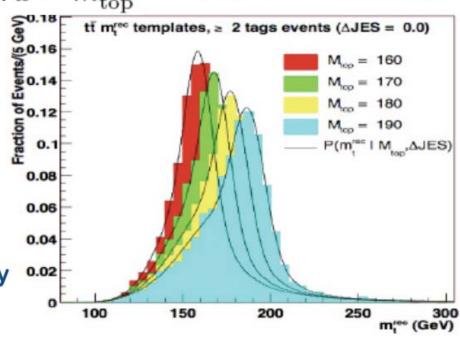
•
$$\sigma_t = 2.90 \pm 0.59 \text{ pb}$$

• SM Prediction:


•
$$\sigma_s^{SM} = 1.04 \pm 0.04 \text{ pb}$$

•
$$\sigma_t^{SM} = 2.26 \pm 0.12 \, pb$$

 $\pm 20\%$


David Toback, Texas A&M University - CDF Collaboration

W Helicity Backups

Top Mass Stuff

- The measurements shown today are based on:
 - Template method
 - Matrix Element method
- Template method:
 - Pick a set of variables x sensitive to $m_{
 m top}$
 - Create "templates" = distributions of x using MC:
 - for signal: $x = x(m_{\text{top}})$, e.g. $x = m_{\text{top}}^{\text{reco}}$
 - for background
 - Maximise the likelihood of their consistence with the data
 - → Advantages:
 - few assumptions
 - · fairly straight forward
 - combination of channels easy

More Top Mass Stuff

- The measurements shown today are based on:
 - Template method
 - Matrix Element method
- Matrix Element method:
 - Calculate p.d.f. on an event-by-event basis:

$$P_{\text{evt}}(x, m_{\text{top}}) \propto f P_{\text{sig}}(x, m_{\text{top}}) + (1 - f) P_{\text{bgr}}(x)$$

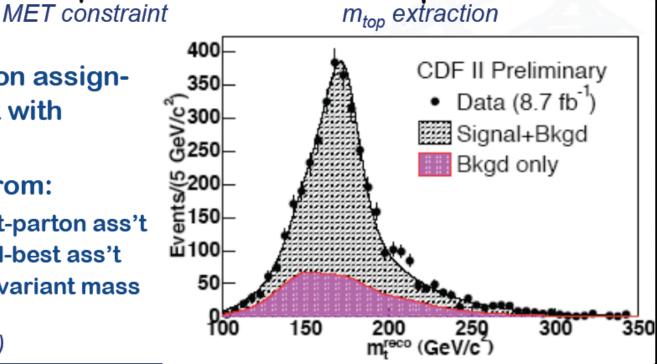
The clue:

$$P_{\rm sig}(x, m_{
m top}) \equiv \frac{1}{\sigma_{t\bar{t}}(m_{
m top})} \int W(x, y) d\sigma_{t\bar{t}}(y, m_{
m top})$$

 $\propto |\mathcal{M}|^2(y,m_{\mathrm{top}})$

- For each event, we calculate $P_{
 m sig}(x,m_{
 m top})$ based on its consistency to come from $t\bar t$ production, depending on $m_{
 m top}$
- Use Transfer Functions W(x,y) to map parton level quantities y to reco level quantities x
- → Maximal use of stat. information on event-by-event basis!
 - (Disadvantage: high computational demand)

Top Mass Stuff: Lepton+Jets


- Template method in lepton+jets final states, CDF (8.7 fb⁻¹)
 - Reconstruct the event kinematics by minimising:

$$\chi^{2} = \sum_{i=\ell,4jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(U_{j}^{fit} - U_{j}^{meas})^{2}}{\sigma_{j}^{2}} + \frac{(M_{jj} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{\ell\nu} - M_{W})^{2}}{\Gamma_{U}^{2}} + \frac{(M_{bjj} - m_{t}^{reco})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{b\ell\nu} - m_{t}^{reco})^{2}}{\Gamma_{t}^{2}}$$

- Consider jet-parton assignments consistent with b-tagging
- Form templates from:

JES constraint

- $\mathbf{m}_t^{\mathrm{reco}}$: best jet-parton ass't
- $m_{\scriptscriptstyle t}^{
 m reco(2)}$: second-best ass't
- $m_{
 m jj}$: dijet invariant mass

CDF Conf-Note 10761 (2012)

R Measurements

Ratio of branching fractions R

in the SM the ratio
$$R = \frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{tb}|^2 + |V_{tb}|^2}$$
 is constrained

by CKM unitarity to be $R=1 \rightarrow R < 1$ could indicate new physics

measure R simultaneously with the ttbar cross section dropping the assumption R=1

CDF 7.5 fb⁻¹ (1+jets)

$$\sigma_{t\bar{t}} = 7.4 \pm 1.1$$
 pb

$$R = 0.91 \pm 0.09$$

$$|V_{tb}| = 0.95 \pm 0.05$$

stat +syst uncertainties

D0 5.4 fb⁻¹ (dilepton & 1+jets)

$$\sigma_{t\,\bar{t}} = 7.74^{+0.67}_{-0.57}$$
 pb

$$R = 0.90 \pm 0.04$$

$$|V_{tb}| = 0.95 \pm 0.02$$

$$|V_{tb}| > 0.88$$
 @ 99.7% CL

stat +syst uncertainties

PRL 107, 121802 (2011)

Single Top Stuff

- Train the NN with 11~14 variables in four channels (2, 3 jets with 1, 2 b-tags)
- Train for s-channel in 2 jet 2 b-tags, train for t-channel in the rest channels
- Train the NN with systematic mixed samples for better uncertainty constraint (~3% improvement expected)
 - Main analysis channel: Lepton+Jets
 - Only one isolated lepton
 - Large missing Et from neutrino
 - At least 2 jets
 - At least one of the jets is b-tagged

- Background rejection:
- CDF: Veto QCD, Dilepton, Z and Cosmic
- Still large backgrounds share similar final state after the background rejection.

t-channel
s-channel
W+jets
Z+jet, dibosons
tt
Multijets

David Toback, Texas A&A Multijets
Top Quark Properties with the Fu

llaboration

II Dataset